ﻻ يوجد ملخص باللغة العربية
Multi-messenger astronomy is a powerful tool to study the physical processes driving the non-thermal Universe. A combination of observations in cosmic rays, neutrinos, photons of all wavelengths and gravitational waves is expected. The alert system of the Baikal-GVD detector under construction will allow for a fast, on-line reconstruction of neutrino events recorded by the Baikal-GVD telescope and - if predefined conditions are satisfied - for the formation of an alert message to other communities. The preliminary results of searches for high-energy neutrinos in coincidence with GW170817/GRB170817A using the cascade mode of neutrino detection are discussed. Two Baikal-GVD clusters were operating during 2017. The zenith angle of NGC 4993 at the detection time of the GW170817 was 93.3 degrees. No events spatially coincident with GRB170817A were found. Given the non-detection of neutrino events associated with GW170817, upper limits on the neutrino fluence were established.
The Baikal-GVD deep underwater neutrino experiment participates in the international multi-messenger program on discovering the astrophysical sources of high energy fluxes of cosmic particles, while being at the stage of deployment with a gradual inc
Neutrino astronomy offers a novel view of the non-thermal Universe and is complementary to other astronomical disciplines. The field has seen rapid progress in recent years, including the first detection of astrophysical neutrinos in the TeV-PeV ener
Baikal-GVD is a neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-meganton subarrays (clusters). The design of Baikal-GVD allows one to search for astrophysical neutrinos already at early phases of the array const
Baikal-GVD is a km$^3$-scale neutrino telescope being constructed in Lake Baikal. Muon and partially tau (anti)neutrino interactions near the detector through the W$^{pm}$-boson exchange are accompanied by muon tracks. Reconstructed direction of the
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by Fermi-GBM and INTEGRAL, indicat