ترغب بنشر مسار تعليمي؟ اضغط هنا

Once a MAN: Towards Multi-Target Attack via Learning Multi-Target Adversarial Network Once

108   0   0.0 ( 0 )
 نشر من قبل Jiangfan Han
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern deep neural networks are often vulnerable to adversarial samples. Based on the first optimization-based attacking method, many following methods are proposed to improve the attacking performance and speed. Recently, generation-based methods have received much attention since they directly use feed-forward networks to generate the adversarial samples, which avoid the time-consuming iterative attacking procedure in optimization-based and gradient-based methods. However, current generation-based methods are only able to attack one specific target (category) within one model, thus making them not applicable to real classification systems that often have hundreds/thousands of categories. In this paper, we propose the first Multi-target Adversarial Network (MAN), which can generate multi-target adversarial samples with a single model. By incorporating the specified category information into the intermediate features, it can attack any category of the target classification model during runtime. Experiments show that the proposed MAN can produce stronger attack results and also have better transferability than previous state-of-the-art methods in both multi-target attack task and single-target attack task. We further use the adversarial samples generated by our MAN to improve the robustness of the classification model. It can also achieve better classification accuracy than other methods when attacked by various methods.

قيم البحث

اقرأ أيضاً

Deep neural networks have achieved impressive performance in various areas, but they are shown to be vulnerable to adversarial attacks. Previous works on adversarial attacks mainly focused on the single-task setting. However, in real applications, it is often desirable to attack several models for different tasks simultaneously. To this end, we propose Multi-Task adversarial Attack (MTA), a unified framework that can craft adversarial examples for multiple tasks efficiently by leveraging shared knowledge among tasks, which helps enable large-scale applications of adversarial attacks on real-world systems. More specifically, MTA uses a generator for adversarial perturbations which consists of a shared encoder for all tasks and multiple task-specific decoders. Thanks to the shared encoder, MTA reduces the storage cost and speeds up the inference when attacking multiple tasks simultaneously. Moreover, the proposed framework can be used to generate per-instance and universal perturbations for targeted and non-targeted attacks. Experimental results on the Office-31 and NYUv2 datasets demonstrate that MTA can improve the quality of attacks when compared with its single-task counterpart.
221 - Yangyi Chen , Jin Su , Wei Wei 2021
Recently, the textual adversarial attack models become increasingly popular due to their successful in estimating the robustness of NLP models. However, existing works have obvious deficiencies. (1) They usually consider only a single granularity of modification strategies (e.g. word-level or sentence-level), which is insufficient to explore the holistic textual space for generation; (2) They need to query victim models hundreds of times to make a successful attack, which is highly inefficient in practice. To address such problems, in this paper we propose MAYA, a Multi-grAnularitY Attack model to effectively generate high-quality adversarial samples with fewer queries to victim models. Furthermore, we propose a reinforcement-learning based method to train a multi-granularity attack agent through behavior cloning with the expert knowledge from our MAYA algorithm to further reduce the query times. Additionally, we also adapt the agent to attack black-box models that only output labels without confidence scores. We conduct comprehensive experiments to evaluate our attack models by attacking BiLSTM, BERT and RoBERTa in two different black-box attack settings and three benchmark datasets. Experimental results show that our models achieve overall better attacking performance and produce more fluent and grammatical adversarial samples compared to baseline models. Besides, our adversarial attack agent significantly reduces the query times in both attack settings. Our codes are released at https://github.com/Yangyi-Chen/MAYA.
Multi-target regression is concerned with the simultaneous prediction of multiple continuous target variables based on the same set of input variables. It arises in several interesting industrial and environmental application domains, such as ecologi cal modelling and energy forecasting. This paper presents an ensemble method for multi-target regression that constructs new target variables via random linear combinations of existing targets. We discuss the connection of our approach with multi-label classification algorithms, in particular RA$k$EL, which originally inspired this work, and a family of recent multi-label classification algorithms that involve output coding. Experimental results on 12 multi-target datasets show that it performs significantly better than a strong baseline that learns a single model for each target using gradient boosting and compares favourably to multi-objective random forest approach, which is a state-of-the-art approach. The experiments further show that our approach improves more when stronger unconditional dependencies exist among the targets.
In this work, we address the task of unsupervised domain adaptation (UDA) for semantic segmentation in presence of multiple target domains: The objective is to train a single model that can handle all these domains at test time. Such a multi-target a daptation is crucial for a variety of scenarios that real-world autonomous systems must handle. It is a challenging setup since one faces not only the domain gap between the labeled source set and the unlabeled target set, but also the distribution shifts existing within the latter among the different target domains. To this end, we introduce two adversarial frameworks: (i) multi-discriminator, which explicitly aligns each target domain to its counterparts, and (ii) multi-target knowledge transfer, which learns a target-agnostic model thanks to a multi-teacher/single-student distillation mechanism.The evaluation is done on four newly-proposed multi-target benchmarks for UDA in semantic segmentation. In all tested scenarios, our approaches consistently outperform baselines, setting competitive standards for the novel task.
High-level representation-guided pixel denoising and adversarial training are independent solutions to enhance the robustness of CNNs against adversarial attacks by pre-processing input data and re-training models, respectively. Most recently, advers arial training techniques have been widely studied and improved while the pixel denoising-based method is getting less attractive. However, it is still questionable whether there exists a more advanced pixel denoising-based method and whether the combination of the two solutions benefits each other. To this end, we first comprehensively investigate two kinds of pixel denoising methods for adversarial robustness enhancement (i.e., existing additive-based and unexplored filtering-based methods) under the loss functions of image-level and semantic-level restorations, respectively, showing that pixel-wise filtering can obtain much higher image quality (e.g., higher PSNR) as well as higher robustness (e.g., higher accuracy on adversarial examples) than existing pixel-wise additive-based method. However, we also observe that the robustness results of the filtering-based method rely on the perturbation amplitude of adversarial examples used for training. To address this problem, we propose predictive perturbation-aware pixel-wise filtering, where dual-perturbation filtering and an uncertainty-aware fusion module are designed and employed to automatically perceive the perturbation amplitude during the training and testing process. The proposed method is termed as AdvFilter. Moreover, we combine adversarial pixel denoising methods with three adversarial training-based methods, hinting that considering data and models jointly is able to achieve more robust CNNs. The experiments conduct on NeurIPS-2017DEV, SVHN, and CIFAR10 datasets and show the advantages over enhancing CNNs robustness, high generalization to different models, and noise levels.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا