ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Two-View Correspondences and Geometry Using Order-Aware Network

96   0   0.0 ( 0 )
 نشر من قبل Anbang Yao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Establishing correspondences between two images requires both local and global spatial context. Given putative correspondences of feature points in two views, in this paper, we propose Order-Aware Network, which infers the probabilities of correspondences being inliers and regresses the relative pose encoded by the essential matrix. Specifically, this proposed network is built hierarchically and comprises three novel operations. First, to capture the local context of sparse correspondences, the network clusters unordered input correspondences by learning a soft assignment matrix. These clusters are in a canonical order and invariant to input permutations. Next, the clusters are spatially correlated to form the global context of correspondences. After that, the context-encoded clusters are recovered back to the original size through a proposed upsampling operator. We intensively experiment on both outdoor and indoor datasets. The accuracy of the two-view geometry and correspondences are significantly improved over the state-of-the-arts. Code will be available at https://github.com/zjhthu/OANet.git.



قيم البحث

اقرأ أيضاً

This paper tackles the problem of novel view synthesis from a single image. In particular, we target real-world scenes with rich geometric structure, a challenging task due to the large appearance variations of such scenes and the lack of simple 3D m odels to represent them. Modern, learning-based approaches mostly focus on appearance to synthesize novel views and thus tend to generate predictions that are inconsistent with the underlying scene structure. By contrast, in this paper, we propose to exploit the 3D geometry of the scene to synthesize a novel view. Specifically, we approximate a real-world scene by a fixed number of planes, and learn to predict a set of homographies and their corresponding region masks to transform the input image into a novel view. To this end, we develop a new region-aware geometric transform network that performs these multiple tasks in a common framework. Our results on the outdoor KITTI and the indoor ScanNet datasets demonstrate the effectiveness of our network in generating high quality synthetic views that respect the scene geometry, thus outperforming the state-of-the-art methods.
Learning-based multi-view stereo (MVS) methods have demonstrated promising results. However, very few existing networks explicitly take the pixel-wise visibility into consideration, resulting in erroneous cost aggregation from occluded pixels. In thi s paper, we explicitly infer and integrate the pixel-wise occlusion information in the MVS network via the matching uncertainty estimation. The pair-wise uncertainty map is jointly inferred with the pair-wise depth map, which is further used as weighting guidance during the multi-view cost volume fusion. As such, the adverse influence of occluded pixels is suppressed in the cost fusion. The proposed framework Vis-MVSNet significantly improves depth accuracies in the scenes with severe occlusion. Extensive experiments are performed on DTU, BlendedMVS, and Tanks and Temples datasets to justify the effectiveness of the proposed framework.
Estimating fundamental matrices is a classic problem in computer vision. Traditional methods rely heavily on the correctness of estimated key-point correspondences, which can be noisy and unreliable. As a result, it is difficult for these methods to handle image pairs with large occlusion or significantly different camera poses. In this paper, we propose novel neural network architectures to estimate fundamental matrices in an end-to-end manner without relying on point correspondences. New modules and layers are introduced in order to preserve mathematical properties of the fundamental matrix as a homogeneous rank-2 matrix with seven degrees of freedom. We analyze performance of the proposed models using various metrics on the KITTI dataset, and show that they achieve competitive performance with traditional methods without the need for extracting correspondences.
In the segmentation of fine-scale structures from natural and biomedical images, per-pixel accuracy is not the only metric of concern. Topological correctness, such as vessel connectivity and membrane closure, is crucial for downstream analysis tasks . In this paper, we propose a new approach to train deep image segmentation networks for better topological accuracy. In particular, leveraging the power of discrete Morse theory (DMT), we identify global structures, including 1D skeletons and 2D patches, which are important for topological accuracy. Trained with a novel loss based on these global structures, the network performance is significantly improved especially near topologically challenging locations (such as weak spots of connections and membranes). On diverse datasets, our method achieves superior performance on both the DICE score and topological metrics.
Self-attention (SA) network has shown profound value in image captioning. In this paper, we improve SA from two aspects to promote the performance of image captioning. First, we propose Normalized Self-Attention (NSA), a reparameterization of SA that brings the benefits of normalization inside SA. While normalization is previously only applied outside SA, we introduce a novel normalization method and demonstrate that it is both possible and beneficial to perform it on the hidden activations inside SA. Second, to compensate for the major limit of Transformer that it fails to model the geometry structure of the input objects, we propose a class of Geometry-aware Self-Attention (GSA) that extends SA to explicitly and efficiently consider the relative geometry relations between the objects in the image. To construct our image captioning model, we combine the two modules and apply it to the vanilla self-attention network. We extensively evaluate our proposals on MS-COCO image captioning dataset and superior results are achieved when comparing to state-of-the-art approaches. Further experiments on three challenging tasks, i.e. video captioning, machine translation, and visual question answering, show the generality of our methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا