ﻻ يوجد ملخص باللغة العربية
We report the magnetic diffraction pattern and spin wave excitations in (CD$_3$)$_2$ND$_2$[Mn(DCO$_2$)$_3$] measured using elastic and inelastic neutron scattering. The magnetic structure is shown to be a G-type antiferromagnet with moments pointing along the $b$ axis. By comparison with simulations based on linear spin wave theory, we have developed a model for the magnetic interactions in this multiferroic metal-organic framework material. The interactions form a three-dimensional network with antiferromagnetic nearest-neighbour interactions along three directions of $J_1=-0.103(8)$~meV, $J_2=-0.032(8)$~meV and $J_3=-0.035(8)$~meV.
We report detailed neutron scattering studies on Ba$_2$Cu$_3$O$_4$Cl$_2$. The compound consists of two interpenetrating sublattices of Cu, labeled as Cu$_{rm A}$ and Cu$_{rm B}$, each of which forms a square-lattice Heisenberg antiferromagnet. The tw
We report a comprehensive neutron scattering study on the spin excitations in the magnetic Weyl semimetal Co$_3$Sn$_2$S$_2$ with quasi-two-dimensional structure. Both in-plane and out-of-plane dispersions of the spin waves are revealed in the ferroma
Dimethylammonium zinc formate (DMAZnF) is the precursor for a large family of multiferroics, materials which display co-existing magnetic and dielectric ordering. However, the mechanism underlying these orderings remains unclear. While it is generall
We present magnetoresistance studies of the quasi-two-dimensional organic conductor $kappa$-(BETS)$_2$Mn[N(CN)$_2$]$_3$, where BETS stands for bis-(ethylene-dithio)-tetra-selena-fulvalene. Under a moderate pressure of 1.4,kbar, required for stabilizi
The quasi-one-dimensional spin ladder compounds, BaFe$_2$S$_3$ and BaFe$_2$Se$_3$, are investigated by infrared spectroscopy and density functional theory (DFT) calculations. We observe strong anisotropic electronic properties and an optical gap in t