ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive stars in extremely metal-poor galaxies: A window into the past

84   0   0.0 ( 0 )
 نشر من قبل Miriam Garcia
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic History has witnessed the lives and deaths of multiple generations of massive stars, all of them invigorating their host galaxies with ionizing photons, kinetic energy, fresh material and stellar-mass black holes. Ubiquitous engines as they are, Astrophysics needs a good understanding of their formation, evolution, properties and yields throughout the history of the Universe, and with decreasing metal content mimicking the environment at the earliest epochs. Ultimately, a physical model that could be extrapolated to zero metallicity would enable tackling long-standing questions such as What did the First, very massive stars of the Universe look like? or What was their role in the re-ionization of the Universe?. Yet, most our knowledge of metal-poor massive stars is drawn from one single point in metallicity. Massive stars in the Small Magellanic Cloud (SMC, $sim 1/5 Z_{odot}$) currently serve as templates for low-metallicity objects in the early Universe, even though significant differences with respect to massive stars with poorer metal content have been reported. This White Paper summarizes the current knowledge on extremely (sub-SMC) metal poor massive stars, highlighting the most outstanding open questions and the need to supersede the SMC as standard. A new paradigm can be built from nearby extremely metal-poor galaxies that make a new metallicity ladder, but massive stars in these galaxies are out of reach to current observational facilities. Such task would require an L-size mission, consisting of a 10m-class space telescope operating in the optical and the ultraviolet ranges. Alternatively, we propose that ESA unites efforts with NASA to make the LUVOIR mission concept a reality, thus continuing the successful partnership that made Hubble Space Telescope one of the greatest observatories of all time.



قيم البحث

اقرأ أيضاً

162 - P. Bonifacio 2009
CONTEXT:The detailed chemical abundances of extremely metal-poor (EMP) stars are key guides to understanding the early chemical evolution of the Galaxy. Most existing data are, however, for giant stars which may have experienced internal mixing later . AIMS: We aim to compare the results for giants with new, accurate abundances for all observable elements in 18 EMP turnoff stars. METHODS:VLT/UVES spectra at R ~45,000 and S/N~ 130 per pixel (330-1000 nm) are analysed with OSMARCS model atmospheres and the TURBOSPECTRUM code to derive abundances for C, Mg, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, and Ba. RESULTS: For Ca, Ni, Sr, and Ba, we find excellent consistency with our earlier sample of EMP giants, at all metallicities. However, our abundances of C, Sc, Ti, Cr, Mn and Co are ~0.2 dex larger than in giants of similar metallicity. Mg and Si abundances are ~0.2 dex lower (the giant [Mg/Fe] values are slightly revised), while Zn is again ~0.4 dex higher than in giants of similar [Fe/H] (6 stars only). CONCLUSIONS:For C, the dwarf/giant discrepancy could possibly have an astrophysical cause, but for the other elements it must arise from shortcomings in the analysis. Approximate computations of granulation (3D) effects yield smaller corrections for giants than for dwarfs, but suggest that this is an unlikely explanation, except perhaps for C, Cr, and Mn. NLTE computations for Na and Al provide consistent abundances between dwarfs and giants, unlike the LTE results, and would be highly desirable for the other discrepant elements as well. Meanwhile, we recommend using the giant abundances as reference data for Galactic chemical evolution models.
To date no metal-free stars have been identified by direct observations. The most common method of constraining their properties is searching the spectra of the most metal-poor stars for the chemical elements created in the first stars and their supe rnova. In this approach, modelled supernova yields are compared to the observed abundance patterns in extremely metal-poor stars. The method typically only uses the abundance ratios, i.e., the yields are diluted to the observed level. Following the usual assumption of spherical symmetry we compute a simple lower limit of the mass a supernova can mix with and find that it is consistent with all published simulations of early chemical enrichment in the interstellar medium. For three different cases, we demonstrate that this dilution limit can change the conclusions from the abundance fitting. There is a large discrepancy between the dilution found in simulations of SN explosions in minihaloes and the dilution assumed in many abundance fits. Limiting the dilution can significantly alter the likelihood of which supernovae are possible progenitors of observed CEMP-no stars. In particular, some of the faint, very low-yield SNe, which have been suggested as models for the abundance pattern of SMSS0313-6708, cannot explain the measured metal abundances, as their predicted metal yields are too small by two orders of magnitude. Altogether, the new dilution model presented here emphasizes the need to better understand the mixing and dilution behaviour of aspherical SNe.
Extremely metal-poor (EMP) stars are an integral piece in the puzzle that is the early Universe, and although anomolous subclasses of EMP stars such as carbon-enhanced metal-poor (CEMP) stars are well-studied, they make up less than half of all EMP s tars with [Fe/H] $sim -3.0$. The amount of carbon depletion occurring on the red giant branch (carbon offset) is used to determine the evolutionary status of EMP stars, and this offset will differ between CEMP and normal EMP stars. The depletion mechanism employed in stellar models (from which carbon offfsets are derived) is very important, however the only widely available carbon offsets in the literature are derived from stellar models using a thermohaline mixing mechanism that cannot simultaneously match carbon and lithium abundances to observations for a single diffusion coeffcient. Our stellar evolution models utilise a modified thermohaline mixing model that can match carbon and lithium in the metal-poor globular cluster NGC 6397. We compare our models to the bulk of the EMP star sample at [Fe/H] $= -3$ and show that our modified models follow the trend of the observations and deplete less carbon compared to the standard thermohaline mixing theory. We conclude that stellar models that employ the standard thermohaline mixing formalism overestimate carbon offsets and hence CEMP star frequencies, particularly at metallicities where carbon-normal stars dominate the EMP star population.
146 - Julie K. Hollek 2011
We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrog raph snapshot spectra (R~15,000) and corresponding high-resolution (R~35,000) Magellan MIKE spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H]<-3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]<-3. We also find four neutron-capture enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H]<-3.0) of the brightest stars included in CASH and are used to calibrate a newly-developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ~500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.
The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium (metals) have been f ound in the outer regions (halo) of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions (bulges) of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that the most metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا