ﻻ يوجد ملخص باللغة العربية
We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R~15,000) and corresponding high-resolution (R~35,000) Magellan MIKE spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H]<-3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]<-3. We also find four neutron-capture enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H]<-3.0) of the brightest stars included in CASH and are used to calibrate a newly-developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ~500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.
We present a detailed abundance analysis of 23 elements for a newly discovered carbon-enhanced metal-poor (CEMP) star, HE 0414-0343, from the Chemical Abundances of Stars in the Halo (CASH) Project. Its spectroscopic stellar parameters are Teff = 486
CONTEXT:The detailed chemical abundances of extremely metal-poor (EMP) stars are key guides to understanding the early chemical evolution of the Galaxy. Most existing data are, however, for giant stars which may have experienced internal mixing later
Unevolved metal poor stars are the witness of the early evolution of the Galaxy. The determination of their detailed chemical composition is an important tool to understand the chemical history of our Galaxy. The study of their chemical composition c
Sulfur is important: the site of its formation is uncertain, and at very low metallicity the trend of [S/Fe] against [Fe/H] is controversial. Below [Fe/H]=-2.0, [S/Fe] remains constant or it decreases with [Fe/H], depending on the author and the mult
Reconstructing the chemical evolution of the Milky Way is crucial for understanding the formation of stars, planets, and galaxies throughout cosmic time. Different studies associated with element production in the early universe and how elements are