ﻻ يوجد ملخص باللغة العربية
In this paper we consider a free boundary problem which models the spreading of an invasive species whose spreading is enhanced by the changing climate. We assume that the climate is shifting with speed c and obtain a complete classification of the long-time dynamical behaviour of the species. The model is similar to that in [9] with a slight refinement in the free boundary condition. While [9], like many works in the literature, investigates the case that unfavourable environment is shifting into the favourable habitat of the concerned species, here we examine the situation that the unfavourable habitat of an invasive species is replaced by a favourable environment with a shifting speed c. We show that a spreading-vanishing dichotomy holds, and there exists a critical speed$c_0$ such that when spreading happens in the case $c < c_0$, the spreading profile is determined by a semi-wave with forced speed c, but when $c geq c_0$, the spreading profile is determined by the usual semi-wave with speed $c_0$.
We consider the vectorial analogue of the thin free boundary problem introduced in cite{CRS} as a realization of a nonlocal version of the classical Bernoulli problem. We study optimal regularity, nondegeneracy, and density properties of local minimi
In this paper, we proceed to study the nonlocal diffusion problem proposed by Li and Wang [8], where the left boundary is fixed, while the right boundary is a nonlocal free boundary. We first give some accurate estimates on the longtime behavior by c
We consider a free boundary problem on cones depending on a parameter c and study when the free boundary is allowed to pass through the vertex of the cone. We show that when the cone is three-dimensional and c is large enough, the free boundary avoid
In the present paper, we prove the a priori estimates of Sobolev norms for a free boundary problem of the incompressible inviscid MHD equations in all physical spatial dimensions $n=2$ and 3 by adopting a geometrical point of view used in Christodoul
We consider a free boundary problem on three-dimensional cones depending on a parameter c and study when the free boundary is allowed to pass through the vertex of the cone. Combining analysis and computer-assisted proof, we show that when c is less