ﻻ يوجد ملخص باللغة العربية
We revisit the calculation of perturbative quark transverse momentum dependent parton distribution functions and fragmentation functions using the exponential regulator for rapidity divergences. We show that the exponential regulator provides a consistent framework for the calculation of various ingredients in transverse momentum dependent factorization. Compared to existing regulators in the literature, the exponential regulator has a couple of advantages which we explain in detail. As a result, the calculation is greatly simplified and we are able to obtain the next-to-next-to-leading order results up to $mathcal{O}(epsilon^2)$ in dimensional regularization. These terms are necessary for a higher order calculation which is made possible with the simplification brought by the new regulator. As a by-product, we have obtained the two-loop quark jet function for the Energy-Energy Correlator in the back-to-back limit, which is the last missing ingredient for its N$^3$LL resummation.
We calculate in this paper the perturbative gluon transverse momentum dependent parton distribution functions (TMDPDFs) and fragmentation functions (TMDFFs) using the exponential regulator for rapidity divergences. We obtain results for both unpolari
We present a summary of a recent workshop held at Duke University on Partonic Transverse Momentum in Hadrons: Quark Spin-Orbit Correlations and Quark-Gluon Interactions. The transverse momentum dependent parton distribution functions (TMDs), parton-t
We define and study the properties of generalized beam functions (BFs) and fragmenting jet functions (FJFs), which are fully-unintegrated parton distribution functions (PDFs) and fragmentation functions (FFs) for perturbative k_T. We calculate at one
We present the CTEQ6HQ parton distribution set which is determined in the general variable flavor number scheme which incorporates heavy flavor mass effects; hence, this set provides advantages for precision observables which are sensitive to charm a
We investigate the uncertainties of the heavy-quark parton distribution functions in the variable flavor number scheme. Because the charm- and bottom-quark parton distribution functions (PDFs) are constructed predominantly from the gluon PDF, it is a