ﻻ يوجد ملخص باللغة العربية
We define and study the properties of generalized beam functions (BFs) and fragmenting jet functions (FJFs), which are fully-unintegrated parton distribution functions (PDFs) and fragmentation functions (FFs) for perturbative k_T. We calculate at one loop the coefficients for matching them onto standard PDFs and FFs, correcting previous results for the BFs in the literature. Technical subtleties when measuring transverse momentum in dimensional regularization are clarified, and this enables us to renormalize in momentum space. Generalized BFs describe the distribution in the full four-momentum k_mu of a colliding parton taken out of an initial-state hadron, and therefore characterize the collinear initial-state radiation. We illustrate their importance through a factorization theorem for pp -> l^+ l^- + 0 jets, where the transverse momentum of the lepton pair is measured. Generalized FJFs are relevant for the analysis of semi-inclusive processes where the full momentum of a hadron, fragmenting from a jet with constrained invariant mass, is measured. Their significance is shown for the example of e^+ e^- -> dijet+h, where the perpendicular momentum of the fragmenting hadron with respect to the thrust axis is measured.
Motivated by the need to correct the potentially large kinematic errors in approximations used in the standard formulation of perturbative QCD, we reformulate deeply inelastic lepton-proton scattering in terms of gauge invariant, universal parton cor
We calculate in this paper the perturbative gluon transverse momentum dependent parton distribution functions (TMDPDFs) and fragmentation functions (TMDFFs) using the exponential regulator for rapidity divergences. We obtain results for both unpolari
We revisit the calculation of perturbative quark transverse momentum dependent parton distribution functions and fragmentation functions using the exponential regulator for rapidity divergences. We show that the exponential regulator provides a consi
We discuss the unintegrated parton distribution functions (UPDFs) introduced by Kimber, Martin and Ryskin (KMR), which are frequently used in phenomenological analyses of hard processes with transverse momenta of partons taken into account. We demons
First attempts are described to determine the unintegrated Parton Density Function of the gluon from a fit to measurements of the structure function $F_2(x,Q^2)$ and also $F_2^c(x,Q^2)$ measured at HERA. Reasonable descriptions of both structure func