ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncheatable Machine Learning Inference

154   0   0.0 ( 0 )
 نشر من قبل Josh Payne
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Classification-as-a-Service (CaaS) is widely deployed today in machine intelligence stacks for a vastly diverse set of applications including anything from medical prognosis to computer vision tasks to natural language processing to identity fraud detection. The computing power required for training complex models on large datasets to perform inference to solve these problems can be very resource-intensive. A CaaS provider may cheat a customer by fraudulently bypassing expensive training procedures in favor of weaker, less computationally-intensive algorithms which yield results of reduced quality. Given a classification service supplier $S$, intermediary CaaS provider $P$ claiming to use $S$ as a classification backend, and customer $C$, our work addresses the following questions: (i) how can $P$s claim to be using $S$ be verified by $C$? (ii) how might $S$ make performance guarantees that may be verified by $C$? and (iii) how might one design a decentralized system that incentivizes service proofing and accountability? To this end, we propose a variety of methods for $C$ to evaluate the service claims made by $P$ using probabilistic performance metrics, instance seeding, and steganography. We also propose a method of measuring the robustness of a model using a blackbox adversarial procedure, which may then be used as a benchmark or comparison to a claim made by $S$. Finally, we propose the design of a smart contract-based decentralized system that incentivizes service accountability to serve as a trusted Quality of Service (QoS) auditor.

قيم البحث

اقرأ أيضاً

Membership inference attack aims to identify whether a data sample was used to train a machine learning model or not. It can raise severe privacy risks as the membership can reveal an individuals sensitive information. For example, identifying an ind ividuals participation in a hospitals health analytics training set reveals that this individual was once a patient in that hospital. Membership inference attacks have been shown to be effective on various machine learning models, such as classification models, generative models, and sequence-to-sequence models. Meanwhile, many methods are proposed to defend such a privacy attack. Although membership inference attack is an emerging and rapidly growing research area, there is no comprehensive survey on this topic yet. In this paper, we bridge this important gap in membership inference attack literature. We present the first comprehensive survey of membership inference attacks. We summarize and categorize existing membership inference attacks and defenses and explicitly present how to implement attacks in various settings. Besides, we discuss why membership inference attacks work and summarize the benchmark datasets to facilitate comparison and ensure fairness of future work. Finally, we propose several possible directions for future research and possible applications relying on reviewed works.
This work presents Origami, which provides privacy-preserving inference for large deep neural network (DNN) models through a combination of enclave execution, cryptographic blinding, interspersed with accelerator-based computation. Origami partitions the ML model into multiple partitions. The first partition receives the encrypted user input within an SGX enclave. The enclave decrypts the input and then applies cryptographic blinding to the input data and the model parameters. Cryptographic blinding is a technique that adds noise to obfuscate data. Origami sends the obfuscated data for computation to an untrusted GPU/CPU. The blinding and de-blinding factors are kept private by the SGX enclave, thereby preventing any adversary from denoising the data, when the computation is offloaded to a GPU/CPU. The computed output is returned to the enclave, which decodes the computation on noisy data using the unblinding factors privately stored within SGX. This process may be repeated for each DNN layer, as has been done in prior work Slalom. However, the overhead of blinding and unblinding the data is a limiting factor to scalability. Origami relies on the empirical observation that the feature maps after the first several layers can not be used, even by a powerful conditional GAN adversary to reconstruct input. Hence, Origami dynamically switches to executing the rest of the DNN layers directly on an accelerator without needing any further cryptographic blinding intervention to preserve privacy. We empirically demonstrate that using Origami, a conditional GAN adversary, even with an unlimited inference budget, cannot reconstruct the input. We implement and demonstrate the performance gains of Origami using the VGG-16 and VGG-19 models. Compared to running the entire VGG-19 model within SGX, Origami inference improves the performance of private inference from 11x while using Slalom to 15.1x.
Traditional differential privacy is independent of the data distribution. However, this is not well-matched with the modern machine learning context, where models are trained on specific data. As a result, achieving meaningful privacy guarantees in M L often excessively reduces accuracy. We propose Bayesian differential privacy (BDP), which takes into account the data distribution to provide more practical privacy guarantees. We also derive a general privacy accounting method under BDP, building upon the well-known moments accountant. Our experiments demonstrate that in-distribution samples in classic machine learning datasets, such as MNIST and CIFAR-10, enjoy significantly stronger privacy guarantees than postulated by DP, while models maintain high classification accuracy.
Machine Learning services are being deployed in a large range of applications that make it easy for an adversary, using the algorithm and/or the model, to gain access to sensitive data. This paper investigates fundamental bounds on information leakag e. First, we identify and bound the success rate of the worst-case membership inference attack, connecting it to the generalization error of the target model. Second, we study the question of how much sensitive information is stored by the algorithm about the training set and we derive bounds on the mutual information between the sensitive attributes and model parameters. Although our contributions are mostly of theoretical nature, the bounds and involved concepts are of practical relevance. Inspired by our theoretical analysis, we study linear regression and DNN models to illustrate how these bounds can be used to assess the privacy guarantees of ML models.
In this paper, we investigate the effect of machine learning based anonymization on anomalous subgroup preservation. In particular, we train a binary classifier to discover the most anomalous subgroup in a dataset by maximizing the bias between the g roups predicted odds ratio from the model and observed odds ratio from the data. We then perform anonymization using a variational autoencoder (VAE) to synthesize an entirely new dataset that would ideally be drawn from the distribution of the original data. We repeat the anomalous subgroup discovery task on the new data and compare it to what was identified pre-anonymization. We evaluated our approach using publicly available datasets from the financial industry. Our evaluation confirmed that the approach was able to produce synthetic datasets that preserved a high level of subgroup differentiation as identified initially in the original dataset. Such a distinction was maintained while having distinctly different records between the synthetic and original dataset. Finally, we packed the above end to end process into what we call Utility Guaranteed Deep Privacy (UGDP) system. UGDP can be easily extended to onboard alternative generative approaches such as GANs to synthesize tabular data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا