ﻻ يوجد ملخص باللغة العربية
We study two-dimensional integrable field theories from the viewpoint of the four-dimensional Chern-Simons-type gauge theory introduced recently. The integrable field theories are realized as effective theories for the four-dimensional theory coupled with two-dimensional surface defects, and we can systematically compute their Lagrangians and the Lax operators satisfying the zero-curvature condition. Our construction includes many known integrable field theories, such as Gross-Neveu models, principal chiral models with Wess-Zumino terms and symmetric-space coset sigma models. Moreover we obtain various generalization these models in a number of different directions, such as trigonometric/elliptic deformations, multi-defect generalizations and models associated with higher-genus spectral curves, many of which seem to be new.
We investigate the quantum entanglement entropy for the four-dimensional Euclidean SU(3) gauge theory. We present the first non-perturbative calculation of the entropic $c$-function ($C(l)$) of SU(3) gauge theory in lattice Monte Carlo simulation usi
We apply Gauge Theory of Arbitrage (GTA) {hep-th/9710148} to derivative pricing. We show how the standard results of Black-Scholes analysis appear from GTA and derive correction to the Black-Scholes equation due to a virtual arbitrage and speculators
For the simplest quantum field theory originating from a non-trivial fixed point of the renormalization group, the Lee-Yang model, we show that the operator space determined by the particle dynamics in the massive phase and that prescribed by conformal symmetry at criticality coincide.
We study the second-order phase transition in the $d$-dimensional Ising model with long-range interactions decreasing as a power of the distance $1/r^{d+s}$. For $s$ below some known value $s_*$, the transition is described by a conformal field theor
We present a lattice formulation of noncommutative Yang-Mills theory in arbitrary even dimensionality. The UV/IR mixing characteristic of noncommutative field theories is demonstrated at a completely nonperturbative level. We prove a discrete Morita