ترغب بنشر مسار تعليمي؟ اضغط هنا

A scaling theory for the long-range to short-range crossover and an infrared duality

150   0   0.0 ( 0 )
 نشر من قبل Slava Rychkov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the second-order phase transition in the $d$-dimensional Ising model with long-range interactions decreasing as a power of the distance $1/r^{d+s}$. For $s$ below some known value $s_*$, the transition is described by a conformal field theory without a local stress tensor operator, with critical exponents varying continuously as functions of $s$. At $s=s_*$, the phase transition crosses over to the short-range universality class. While the location $s_*$ of this crossover has been known for 40 years, its physics has not been fully understood, the main difficulty being that the standard description of the long-range critical point is strongly coupled at the crossover. In this paper we propose another field-theoretic description which, on the contrary, is weakly coupled near the crossover. We use this description to clarify the nature of the crossover and make predictions about the critical exponents. That the same long-range critical point can be reached from two different UV descriptions provides a new example of infrared duality.

قيم البحث

اقرأ أيضاً

We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power sigma of the distance. We show that there is a value of sigma of the long-range model for which the critical behavior is very similar to that of the short-range model in four dimensions. We also study a value of sigma for which we find the critical behavior to be compatible with that of the three dimensional model, though we have much less precision than in the four-dimensional case.
We consider trapped bosons with contact interactions as well as Coulomb repulsion or gravitational attraction in one spatial dimension. The exact ground state energy and wave function are identified in closed form together with a rich phase diagram, unveiled by Monte Carlo methods, with crossovers between different regimes. A trapped McGuire quantum soliton describes the attractive case. Weak repulsion results in an incompressible Laughlin-like fluid with flat density, well reproduced by a Gross-Pitaevskii equation with long-range interactions. Higher repulsion induces Friedel oscillation and the eventual formation of a Wigner crystal.
We investigate an extension of the quantum Ising model in one spatial dimension including long-range $1 / r^{alpha}$ interactions in its statics and dynamics with possible applications from heteronuclear polar molecules in optical lattices to trapped ions described by two-state spin systems. We introduce the statics of the system via both numerical techniques with finite size and infinite size matrix product states and a theoretical approaches using a truncated Jordan-Wigner transformation for the ferromagnetic and antiferromagnetic case and show that finite size effects have a crucial role shifting the quantum critical point of the external field by fifteen percent between thirty-two and around five-hundred spins. We numerically study the Kibble-Zurek hypothesis in the long-range quantum Ising model with Matrix Product States. A linear quench of the external field through the quantum critical point yields a power-law scaling of the defect density as a function of the total quench time. For example, the increase of the defect density is slower for longer-range models and the critical exponent changes by twenty-five per cent. Our study emphasizes the importance of such long-range interactions in statics and dynamics that could point to similar phenomena in a different setup of dynamical systems or for other models.
We compute the three-loop beta functions of long-range multi-scalar models with general quartic interactions. The long-range nature of the models is encoded in a kinetic term with a Laplacian to the power $0<zeta<1$, rendering the computation of Feyn man diagrams much harder than in the usual short-range case ($zeta=1$). As a consequence, previous results stopped at two loops, while six-loop results are available for short-range models. We push the renormalization group analysis to three loops, in an $epsilon=4zeta-d$ expansion at fixed dimension $d<4$, extensively using the Mellin-Barnes representation of Feynman amplitudes in the Schwinger parametrization. We then specialize the beta functions to various models with different symmetry groups: $O(N)$, $(mathbb{Z}_2)^N rtimes S_N$, and $O(N)times O(M)$. For such models, we compute the fixed points and critical exponents.
62 - Hai Lin , Haoxin Wang 2019
We construct a class of backgrounds with a warp factor and anti-de Sitter asymptotics, which are dual to boundary systems that have a ground state with a short-range two-point correlation function. The solutions of probe scalar fields on these backgr ounds are obtained by means of confluent hypergeometric functions. The explicit analytical expressions of a class of short-range correlation functions on the boundary and the correlation lengths $xi$ are derived from gravity computation. The two-point function calculated from gravity side is explicitly shown to exponentially decay with respect to separation in the infrared. Such feature inevitably appears in confining gauge theories and certain strongly correlated condensed matter systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا