ﻻ يوجد ملخص باللغة العربية
Deep neural networks (DNNs) are vulnerable to adversarial attack which is maliciously implemented by adding human-imperceptible perturbation to images and thus leads to incorrect prediction. Existing studies have proposed various methods to detect the new adversarial attacks. However, new attack methods keep evolving constantly and yield new adversarial examples to bypass the existing detectors. It needs to collect tens of thousands samples to train detectors, while the new attacks evolve much more frequently than the high-cost data collection. Thus, this situation leads the newly evolved attack samples to remain in small scales. To solve such few-shot problem with the evolving attack, we propose a meta-learning based robust detection method to detect new adversarial attacks with limited examples. Specifically, the learning consists of a double-network framework: a task-dedicated network and a master network which alternatively learn the detection capability for either seen attack or a new attack. To validate the effectiveness of our approach, we construct the benchmarks with few-shot-fashion protocols based on three conventional datasets, i.e. CIFAR-10, MNIST and Fashion-MNIST. Comprehensive experiments are conducted on them to verify the superiority of our approach with respect to the traditional adversarial attack detection methods.
In this paper, we study fast training of adversarially robust models. From the analyses of the state-of-the-art defense method, i.e., the multi-step adversarial training, we hypothesize that the gradient magnitude links to the model robustness. Motiv
Although the recent progress is substantial, deep learning methods can be vulnerable to the maliciously generated adversarial examples. In this paper, we present a novel training procedure and a thresholding test strategy, towards robust detection of
Data augmentation has become a de facto component for training high-performance deep image classifiers, but its potential is under-explored for object detection. Noting that most state-of-the-art object detectors benefit from fine-tuning a pre-traine
Vision transformers (ViTs) have demonstrated impressive performance on a series of computer vision tasks, yet they still suffer from adversarial examples. In this paper, we posit that adversarial attacks on transformers should be specially tailored f
For enterprise, personal and societal applications, there is now an increasing demand for automated authentication of identity from images using computer vision. However, current authentication technologies are still vulnerable to presentation attack