ﻻ يوجد ملخص باللغة العربية
Let $S=K[x_1,ldots,x_n]$ be the polynomial ring in $n$ variables over a field $K$ and $Isubset S$ a squarefree monomial ideal. In the present paper we are interested in the monomials $u in S$ belonging to the socle $Soc(S/I^{k})$ of $S/I^{k}$, i.e., $u otin I^{k}$ and $ux_{i} in I^{k}$ for $1 leq i leq n$. We prove that if a monomial $x_1^{a_1}cdots x_n^{a_n}$ belongs to $Soc(S/I^{k})$, then $a_ileq k-1$ for all $1 leq i leq n$. We then discuss squarefree monomial ideals $I subset S$ for which $x_{[n]}^{k-1} in Soc(S/I^{k})$, where $x_{[n]} = x_{1}x_{2}cdots x_{n}$. Furthermore, we give a combinatorial characterization of finite graphs $G$ on $[n] = {1, ldots, n}$ for which $depth S/(I_{G})^{2}=0$, where $I_{G}$ is the edge ideal of $G$.
Let $A = K[X_1,ldots, X_d]$ and let $I$, $J$ be monomial ideals in $A$. Let $I_n(J) = (I^n colon J^infty)$ be the $n^{th}$ symbolic power of $I$ wrt $J$. It is easy to see that the function $f^I_J(n) = e_0(I_n(J)/I^n)$ is of quasi-polynomial type, s
Squarefree powers of edge ideals are intimately related to matchings of the underlying graph. In this paper we give bounds for the regularity of squarefree powers of edge ideals, and we consider the question of when such powers are linearly related o
We compute the minimal primary decomposition for completely squarefree lexsegment ideals. We show that critical squarefree monomial ideals are sequentially Cohen-Macaulay. As an application, we give a complete characterization of the completely squar
Let $K$ be a field and $S = K[x_1,dots,x_n]$ be a polynomial ring over $K$. We discuss the behaviour of the extremal Betti numbers of the class of squarefree strongly stable ideals. More precisely, we give a numerical characterization of the possible
This paper is concerned with the question of whether geometric structures such as cell complexes can be used to simultaneously describe the minimal free resolutions of all powers of a monomial ideal. We provide a full answer in the case of square-fre