ترغب بنشر مسار تعليمي؟ اضغط هنا

Parametrically Constrained Geometry Relaxations for High-Throughput Materials Science

68   0   0.0 ( 0 )
 نشر من قبل Thomas Purcell
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Reducing parameter spaces via exploiting symmetries has greatly accelerated and increased the quality of electronic-structure calculations. Unfortunately, many of the traditional methods fail when the global crystal symmetry is broken, even when the distortion is only a slight perturbation (e.g. Jahn-Teller like distortions). Here we introduce a flexible and generalizable parametric relaxation scheme, and implement it in the all-electron code FHI-aims. This approach utilizes parametric constraints to maintain symmetry at any level. After demonstrating the methods ability to relax metastable structures, we highlight its adaptability and performance over a test set of 359 materials, across thirteen lattice prototypes. Finally we show how these constraints can reduce the number of steps needed to relax local lattice distortions by an order of magnitude. The flexibility of these constraints enables a significant acceleration of the high-throughput searches for novel materials for numerous applications.

قيم البحث

اقرأ أيضاً

The discoveries of intrinsically magnetic topological materials, including semimetals with a large anomalous Hall effect and axion insulators, have directed fundamental research in solid-state materials. Topological quantum chemistry has enabled the understanding of and the search for paramagnetic topological materials. Using magnetic topological indices obtained from magnetic topological quantum chemistry (MTQC), here we perform a high-throughput search for magnetic topological materials based on first-principles calculations. We use as our starting point the Magnetic Materials Database on the Bilbao Crystallographic Server, which contains more than 549 magnetic compounds with magnetic structures deduced from neutron-scattering experiments, and identify 130 enforced semimetals (for which the band crossings are implied by symmetry eigenvalues), and topological insulators. For each compound, we perform complete electronic structure calculations, which include complete topological phase diagrams using different values of the Hubbard potential. Using a custom code to find the magnetic co-representations of all bands in all magnetic space groups, we generate data to be fed into the algorithm of MTQC to determine the topology of each magnetic material. Several of these materials display previously unknown topological phases, including symmetry-indicated magnetic semimetals, three-dimensional anomalous Hall insulators and higher-order magnetic semimetals. We analyse topological trends in the materials under varying interactions: 60 per cent of the 130 topological materials have topologies sensitive to interactions, and the others have stable topologies under varying interactions. We provide a materials database for future experimental studies and open-source code for diagnosing topologies of magnetic materials.
Within 4 different crystal structures, 2280 ternary intermetallic configurations have been investigated via high-throughput density functional theory calculations in order to discover new semiconducting materials. The screening is restricted to inter metallics with the equimolar composition TMX, where T is a transition metal from the Ti, V, Cr columns, Sr, Ba, Y and La, M an element from the first line of transition metals and X a sp elements (Al, P, Si, Sn and Sb), i.e. to a list of 24 possible elements. Since the calculations are done combinatorically, every possible ternary composition is considered, even those not reported in the literature. All these TMX configurations are investigated in the 4 most reported structure-types: TiNiSi, MgAgAs, BeZrSi and ZrNiAl. With an excellent agreement between calculations and literature for the reported stable phases, we identify 472 possible stable compounds among which 21 are predicted as non-metallic. Among these 21 compositions, 4 could be considered as new semiconductors.
The high-throughput (HT) computational method is a useful tool to screen high performance functional materials. In this work, using the deformation potential method under the single band model, we evaluate the carrier relaxation time and establish an electrical descriptor (c{hi}) characterized by the carrier effective masses based on the simple rigid band approximation. The descriptor (c{hi}) can be used to reasonably represent the maximum power factor without solving the electron Boltzmann transport equation. Additionally, the Gruneisen parameter ({gamma}), a descriptor of the lattice anharmonicity and lattice thermal conductivity, is efficiently evaluated using the elastic properties, omitting the costly phonon calculations. Applying two descriptors (c{hi} and {gamma}) to binary chalcogenides, we HT compute 243 semiconductors and screen 50 promising thermoelectric materials. For these theoretically determined compounds, we successfully predict some previously experimentally and theoretically investigated promising thermoelectric materials. Additionally, 9 p-type and 14 n-type previously unreported binary chalcogenides are also predicted as promising thermoelectric materials. Our work provides not only new thermoelectric candidates with perfect crystalline structure for the future investigations, but also reliable descriptors to HT screen high performance thermoelectric materials.
Materials combining both a high refractive index and a wide band gap are of great interest for optoelectronic and sensor applications. However, these two properties are typically described by an inverse correlation with high refractive index appearin g in small gap materials and vice-versa. Here, we conduct a first-principles high-throughput study on more than 4000 semiconductors (with a special focus on oxides). Our data confirm the general inverse trend between refractive index and band gap but interesting outliers are also identified. The data are then analyzed through a simple model involving two main descriptors: the average optical gap and the effective frequency. The former can be determined directly from the electronic structure of the compounds, but the latter cannot. This calls for further analysis in order to obtain a predictive model. Nonetheless, it turns out that the negative effect of a large band gap on the refractive index can counterbalanced in two ways: (i) by limiting the difference between the direct band gap and the average optical gap which can be realized by a narrow distribution in energy of the optical transitions and (ii) by increasing the effective frequency which can be achieved through either a high number of transitions from the top of the valence band to the bottom of the conduction or a high average probability for these transitions. Focusing on oxides, we use our data to investigate how the chemistry influences this inverse relationship and rationalize why certain classes of materials would perform better. Our findings can be used to search for new compounds in many optical applications both in the linear and non-linear regime (waveguides, optical modulators, laser, frequency converter, etc.).
We search for novel two-dimensional materials that can be easily exfoliated from their parent compounds. Starting from 108423 unique, experimentally known three-dimensional compounds we identify a subset of 5619 that appear layered according to robus t geometric and bonding criteria. High-throughput calculations using van-der-Waals density-functional theory, validated against experimental structural data and calculated random-phase-approximation binding energies, allow to identify 1825 compounds that are either easily or potentially exfoliable, including all that are commonly exfoliated experimentally. In particular, the subset of 1036 easily exfoliable cases---layered materials held together mostly by dispersion interactions and with binding energies up to $30-35$ meV$cdottext{AA}^{-2}$---provides a wealth of novel structural prototypes and simple ternary compounds, and a large portfolio to search materials for optimal properties. For the 258 compounds with up to 6 atoms per primitive cell we comprehensively explore vibrational, electronic, magnetic, and topological properties, identifying in particular 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا