ﻻ يوجد ملخص باللغة العربية
Optical half-wave microresonators enable to control the optical mode density around a quantum system and thus to modify the temporal emission properties. If the coupling rate exceeds the damping rate, strong coupling between a microresonator and a quantum system can be achieved, leading to a coherent energy exchange and the creation of new hybrid modes. Here, we investigate strong coupling between two adjacent lambda/2 Fabry-Perot microresonators, where the resonance of one microresonator can be actively tuned across the resonance of the other microresonator. The transmission spectra of the coupled microresonators show a clear anticrossing behavior, which proves that the two cavity modes are strongly coupled. Additionally, we can vary the coupling rate by changing the resonator geometry and thereby investigate the basic principles of strong coupling with a well-defined model system. Finally, we will show that such a coupled system can theoretically be modelled by coupled damped harmonic oscillators.
We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of
We report on measurements and modeling of the mode structure of tunable Fabry-Perot optical microcavities with imperfect mirrors. We find that non-spherical mirror shape and finite mirror size lead to loss, mode deformation, and shifted resonance fre
A class of multiwavelength Fabry-Perot lasers is introduced where the spectrum is tailored through a non-periodic patterning of the cavity effective index. The cavity geometry is obtained using an inverse scattering approach and can be designed such
The dynamical response of an optical Fabry-Perot cavity is investigated experimentally. We observe oscillations in the transmitted and reflected light intensity if the frequency of the incoupled light field is rapidly changed. In addition, the decay
We demonstrate the optical coupling of two cavities without light transmission through a substrate. Compared to a conventional coupling component, that is a partially transmissive mirror, an all-reflective coupler avoids light absorption in the subst