ﻻ يوجد ملخص باللغة العربية
Neural machine translation (NMT) systems have been shown to give undesirable translation when a small change is made in the source sentence. In this paper, we study the behaviour of NMT systems when multiple changes are made to the source sentence. In particular, we ask the following question Is it possible for an NMT system to predict same translation even when multiple words in the source sentence have been replaced?. To this end, we propose a soft-attention based technique to make the aforementioned word replacements. The experiments are conducted on two language pairs: English-German (en-de) and English-French (en-fr) and two state-of-the-art NMT systems: BLSTM-based encoder-decoder with attention and Transformer. The proposed soft-attention based technique achieves high success rate and outperforms existing methods like HotFlip by a significant margin for all the conducted experiments. The results demonstrate that state-of-the-art NMT systems are unable to capture the semantics of the source language. The proposed soft-attention based technique is an invariance-based adversarial attack on NMT systems. To better evaluate such attacks, we propose an alternate metric and argue its benefits in comparison with success rate.
State-of-the-art NLP models can often be fooled by human-unaware transformations such as synonymous word substitution. For security reasons, it is of critical importance to develop models with certified robustness that can provably guarantee that the
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to
Adversarial training can considerably robustify deep neural networks to resist adversarial attacks. However, some works suggested that adversarial training might comprise the privacy-preserving and generalization abilities. This paper establishes and
Deep Metric Learning (DML), a widely-used technique, involves learning a distance metric between pairs of samples. DML uses deep neural architectures to learn semantic embeddings of the input, where the distance between similar examples is small whil
Recent studies show that deep neural networks (DNN) are vulnerable to adversarial examples, which aim to mislead DNNs by adding perturbations with small magnitude. To defend against such attacks, both empirical and theoretical defense approaches have