ﻻ يوجد ملخص باللغة العربية
We study the Regge trajectories of the Mellin amplitudes of the $0-,1-$ and $2-$ magnon correlators of the Fishnet theory. Since fishnet theory is both integrable and conformal, the correlation functions are known exactly. We find that while for $0$ and $1$ magnon correlators, the Regge poles can be exactly determined as a function of coupling, $2$-magnon correlators can only be dealt with perturbatively. We evaluate the resulting Mellin amplitudes at weak coupling, while for strong coupling we do an order of magnitude calculation.
We compute explicitly the two-dimensional version of Basso-Dixon type integrals for the planar four-point correlation functions given by conformal fishnet Feynman graphs. These diagrams are represented by a fragment of a regular square lattice of pow
The finite remainder function for planar, color-ordered, maximally helicity violating scattering processes in N=4 super Yang-Mills theory possesses a non-vanishing multi-Regge limit that depends on the choice of a Mandelstam region. We analyze the co
A novel way of computing high-order amplitudes in the multi-Regge limit of planar maximally supersymmetric Yang-Mills theory is presented. In this framework, we are able to obtain high-loop and high-leg results by an easy operation on known amplitude
We study the correlator of concentric circular Wilson loops for arbitrary radii, spatial and internal space separations. For real values of the parameters specifying the dual string configuration, a typical Gross-Ooguri phase transition is observed.
We derive the planar limit of 2- and 3-point functions of single-trace chiral primary operators of ${cal N}=2$ SQCD on $S^4$, to all orders in the t Hooft coupling. In order to do so, we first obtain a combinatorial expression for the planar free ene