ترغب بنشر مسار تعليمي؟ اضغط هنا

Basso-Dixon Correlators in Two-Dimensional Fishnet CFT

79   0   0.0 ( 0 )
 نشر من قبل Enrico Olivucci
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute explicitly the two-dimensional version of Basso-Dixon type integrals for the planar four-point correlation functions given by conformal fishnet Feynman graphs. These diagrams are represented by a fragment of a regular square lattice of power-like propagators, arising in the recently proposed integrable bi-scalar fishnet CFT. The formula is derived from first principles, using the formalism of separated variables in integrable SL(2,C) spin chain. It is generalized to anisotropic fishnet, with different powers for propagators in two directions of the lattice.



قيم البحث

اقرأ أيضاً

We study the Regge trajectories of the Mellin amplitudes of the $0-,1-$ and $2-$ magnon correlators of the Fishnet theory. Since fishnet theory is both integrable and conformal, the correlation functions are known exactly. We find that while for $0$ and $1$ magnon correlators, the Regge poles can be exactly determined as a function of coupling, $2$-magnon correlators can only be dealt with perturbatively. We evaluate the resulting Mellin amplitudes at weak coupling, while for strong coupling we do an order of magnitude calculation.
We compute three-point correlation functions in the near-extremal, near-horizon region of a Kerr black hole, and compare to the corresponding finite-temperature conformal field theory correlators. For simplicity, we focus on scalar fields dual to ope rators ${cal O}_h$ whose conformal dimensions obey $h_3=h_1+h_2$, which we name emph{extremal} in analogy with the classic $AdS_5 times S^5$ three-point function in the literature. For such extremal correlators we find perfect agreement with the conformal field theory side, provided that the coupling of the cubic interaction contains a vanishing prefactor $propto h_3-h_1-h_2$. In fact, the bulk three-point function integral for such extremal correlators diverges as $1/(h_3-h_1-h_2)$. This behavior is analogous to what was found in the context of extremal AdS/CFT three-point correlators. As in AdS/CFT our correlation function can nevertheless be computed via analytic continuation from the non-extremal case.
The non-renormalization of the 3-point functions $tr X^{k_1} tr X^{k_2} tr X^{k_3}$ of chiral primary operators in N=4 super-Yang-Mills theory is one of the most striking facts to emerge from the AdS/CFT correspondence. A two-fold puzzle appears in t he extremal case, e.g. k_1 = k_2 + k_3. First, the supergravity calculation involves analytic continuation in the k_i variables to define the product of a vanishing bulk coupling and an infinite integral over AdS. Second, extremal correlators are uniquely sensitive to mixing of the single-trace operators $tr X^k$ with protected multi-trace operators in the same representation of SU(4). We show that the calculation of extremal correlators from supergravity is subject to the same subtlety of regularization known for the 2-point functions, and we present a careful method which justifies the analytic continuation and shows that supergravity fields couple to single traces without admixture. We also study extremal n-point functions of chiral primary operators, and argue that Type IIB supergravity requires that their space-time form is a product of n-1 two-point functions (as in the free field approximation) multiplied by a non-renormalized coefficient. This non-renormalization property of extremal n-point functions is a new prediction of the AdS/CFT correspondence. As a byproduct of this work we obtain the cubic couplings $t phi phi$ and $s phi phi$ of fields in the dilaton and 5-sphere graviton towers of Type IIB supergravity on $AdS_5 times S^5$.
We initiate the study of intersecting surface operators/defects in four-dimensional quantum field theories (QFTs). We characterize these defects by coupled 4d/2d/0d theories constructed by coupling the degrees of freedom localized at a point and on i ntersecting surfaces in spacetime to each other and to the four-dimensional QFT. We construct supersymmetric intersecting surface defects preserving just two supercharges in N = 2 gauge theories. These defects are amenable to exact analysis by localization of the partition function of the underlying 4d/2d/0d QFT. We identify the 4d/2d/0d QFTs that describe intersecting surface operators in N = 2 gauge theories realized by intersecting M2-branes ending on N M5-branes wrapping a Riemann surface. We conjecture and provide evidence for an explicit equivalence between the squashed four-sphere partition function of these intersecting defects and correlation functions in Liouville/Toda CFT with the insertion of arbitrary degenerate vertex operators, which are labeled by representations of SU(N).
155 - Xuanmin Cao , Lian Liu , Hui Liu 2013
We calculate all components of thermal R-current correlators from AdS/CFT correspondence for non-zero momentum and energy. In zero momentum limit, we find an analytic expression for the components Gxx(Gyy). The dielectric function of strong coupling is also presented and compared with that in weak coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا