ﻻ يوجد ملخص باللغة العربية
We compute explicitly the two-dimensional version of Basso-Dixon type integrals for the planar four-point correlation functions given by conformal fishnet Feynman graphs. These diagrams are represented by a fragment of a regular square lattice of power-like propagators, arising in the recently proposed integrable bi-scalar fishnet CFT. The formula is derived from first principles, using the formalism of separated variables in integrable SL(2,C) spin chain. It is generalized to anisotropic fishnet, with different powers for propagators in two directions of the lattice.
We study the Regge trajectories of the Mellin amplitudes of the $0-,1-$ and $2-$ magnon correlators of the Fishnet theory. Since fishnet theory is both integrable and conformal, the correlation functions are known exactly. We find that while for $0$
We compute three-point correlation functions in the near-extremal, near-horizon region of a Kerr black hole, and compare to the corresponding finite-temperature conformal field theory correlators. For simplicity, we focus on scalar fields dual to ope
The non-renormalization of the 3-point functions $tr X^{k_1} tr X^{k_2} tr X^{k_3}$ of chiral primary operators in N=4 super-Yang-Mills theory is one of the most striking facts to emerge from the AdS/CFT correspondence. A two-fold puzzle appears in t
We initiate the study of intersecting surface operators/defects in four-dimensional quantum field theories (QFTs). We characterize these defects by coupled 4d/2d/0d theories constructed by coupling the degrees of freedom localized at a point and on i
We calculate all components of thermal R-current correlators from AdS/CFT correspondence for non-zero momentum and energy. In zero momentum limit, we find an analytic expression for the components Gxx(Gyy). The dielectric function of strong coupling