ﻻ يوجد ملخص باللغة العربية
Low-temperature electrical and thermal transport, magnetic penetration depth, and heat capacity measurements were performed on single crystals of the actinide superconductor UTe2 to determine the structure of the superconducting energy gap. Heat transport measurements performed with currents directed along both crystallographic a- and b-axes reveal a vanishingly small residual fermionic component of the thermal conductivity. The magnetic field dependence of the residual term follows a rapid, quasi-linear increase consistent with the presence of nodal quasiparticles, rising toward the a-axis upper critical field where the Wiedemann-Franz law is recovered. Together with a quadratic temperature dependence of the magnetic penetration depth up to T/T_c=0.3, these measurements provide evidence for an unconventional spin-triplet superconducting order parameter with point nodes. Millikelvin specific heat measurements performed on the same crystals used for thermal transport reveal an upturn below 300 mK that is well described by a divergent quantum-critical contribution to the density of states (DOS). Modeling this contribution with a T^{-1/3} power law allows restoration of the full entropy balance in the superconducting state and a resultant cubic power law for the electronic DOS below T_c, consistent with the point-node gap structure determined by thermal conductivity and penetration depth measurements.
We have obtained strong experimental evidence for the full determination of the superconducting gap structure in all three bands of the spin-triplet superconductor Sr2RuO4 for the first time. We have extended the measurements of the field-orientation
We report the field-orientation dependent specific heat of the spin-triplet superconductor Sr2RuO4 under the magnetic field aligned parallel to the RuO2 planes with high accuracy. Below about 0.3 K, striking 4-fold oscillations of the density of stat
The crystal structure of the new superconductor UTe2 has been investigated for the first time at low temperature (LT) of 2.7 K, just closely above the superconducting transition temperature of about 1.7 K by single crystal neutron diffraction, in ord
We report on tunneling spectroscopy measurements using a Scanning Tunneling Microscope (STM) on the spin triplet superconductor Sr2RuO4. We find a negligible density of states close to the Fermi level and a fully opened gap with a value of $Delta$=0.
The gap structure of a novel uranium-based superconductor UTe$_2$, situated in the vicinity of ferromagnetic quantum criticality, has been investigated via specific-heat $C(T,H,Omega)$ measurements in various field orientations. Its angular $Omega(ph