ﻻ يوجد ملخص باللغة العربية
The availability of inexpensive devices allows nowadays to implement cognitive radio functionalities in large-scale networks such as the internet-of-things and future mobile cellular systems. In this paper, we focus on wideband spectrum sensing in the presence of oversampling, i.e., the sampling frequency of a digital receiver is larger than the signal bandwidth, where signal detection must take into account the front-end impairments of low-cost devices. Based on the noise model of a software-defined radio dongle, we address the problem of robust signal detection in the presence of noise power uncertainty and non-flat noise power spectral density (PSD). In particular, we analyze the receiver operating characteristic of several detectors in the presence of such front-end impairments, to assess the performance attainable in a real-world scenario. We propose new frequency-domain detectors, some of which are proven to outperform previously proposed spectrum sensing techniques such as, e.g., eigenvalue-based tests. The study shows that the best performance is provided by a noise-uncertainty immune energy detector (ED) and, for the colored noise case, by tests that match the PSD of the receiver noise.
The construction quality of the bolt is directly related to the safety of the project, and as such, it must be tested. In this paper, the improved complete ensemble empirical mode decomposition (ICEEMD) method is introduced to the bolt detection sign
Indoor intrusion detection technology has been widely utilized in network security monitoring, smart city, entertainment games, and other fields. Most existing indoor intrusion detection methods directly exploit the Received Signal Strength (RSS) dat
In this paper, we consider the problem of detecting a multichannel signal in interference and noise when signal mismatch happens. We first propose two selective detectors, since their strong selectivity is preferred in some situations. However, these
Algorithms for Massive MIMO uplink detection typically rely on a centralized approach, by which baseband data from all antennas modules are routed to a central node in order to be processed. In case of Massive MIMO, where hundreds or thousands of ant
Convolutional neural networks (CNN) have achieved excellent performance on various tasks, but deploying CNN to edge is constrained by the high energy consumption of convolution operation. Stochastic computing (SC) is an attractive paradigm which perf