ﻻ يوجد ملخص باللغة العربية
Indoor intrusion detection technology has been widely utilized in network security monitoring, smart city, entertainment games, and other fields. Most existing indoor intrusion detection methods directly exploit the Received Signal Strength (RSS) data collected by Monitor Points (MPs) and do not consider the instability of WLAN signals in the complex indoor environments. In response to this urgent problem, this paper proposes a novel WLAN indoor intrusion detection method based on deep signal feature fusion and Minimized Multiple Kernel Maximum Mean Discrepancy (Minimized-MKMMD). Firstly, the multi-branch deep convolutional neural network is used to conduct the dimensionality reduction and feature fusion of the RSS data, and the tags are obtained according to the features of the offline and online RSS fusion features that are corresponding to the silence and intrusion states, and then based on this, the source domain and target domain are constructed respectively. Secondly, the optimal transfer matrix is constructed by minimizing MKMMD. Thirdly, the transferred RSS data in the source domain is utilized for training the classifiers that are applying in getting the classification of the RSS fusion features in the target domain in the same shared subspace. Finally, the intrusion detection of the target environment is realized by iteratively updating the process above until the algorithm converges. The experimental results show that the proposed method can effectively improve the accuracy and robustness of the intrusion detection system.
Existing tag signal detection algorithms inevitably suffer from a high bit error rate (BER) due to the difficulties in estimating the channel state information (CSI). To eliminate the requirement of channel estimation and to improve the system perfor
The existing localization systems for indoor applications basically rely on wireless signal. With the massive deployment of low-cost cameras, the visual image based localization become attractive as well. However, in the existing literature, the hybr
The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the comple
The Global Navigation Satellite Systems (GNSS) like GPS suffer from accuracy degradation and are almost unavailable in indoor environments. Indoor positioning systems (IPS) based on WiFi signals have been gaining popularity. However, owing to the str
Characteristics and way of behavior of attacks and infiltrators on computer networks are usually very difficult and need an expert In addition; the advancement of computer networks, the number of attacks and infiltrations are also increasing. In fact