ﻻ يوجد ملخص باللغة العربية
We are interested in path-dependent semilinear PDEs, where the derivatives are of G{^a}teaux type in specific directions k and b, being the kernel functions of a Volterra Gaussian process X. Under some conditions on k, b and the coefficients of the PDE, we prove existence and uniqueness of a decoupled mild solution, a notion introduced in a previous paper by the authors. We also show that the solution of the PDE can be represented through BSDEs where the forward (underlying) process is X.
In this paper, we study the well-posedness of multi-dimensional backward stochastic differential equations driven by $G$-Brownian motion ($G$-BSDEs) with diagonal generators, the $z$ parts of whose $l$-th components only depend on the $l$-th columns.
We introduce and solve a new type of quadratic backward stochastic differential equation systems defined in an infinite time horizon, called emph{ergodic BSDE systems}. Such systems arise naturally as candidate solutions to characterize forward perfo
The paper analyzes risk assessment for cash flows in continuous time using the notion of convex risk measures for processes. By combining a decomposition result for optional measures, and a dual representation of a convex risk measure for bounded cd
In this paper, we first study one-dimensional quadratic backward stochastic differential equations driven by $G$-Brownian motions ($G$-BSDEs) with unbounded terminal values. With the help of a $theta$-method of Briand and Hu [4] and nonlinear stochas
We introduce a simple, rigorous, and unified framework for solving nonlinear partial differential equations (PDEs), and for solving inverse problems (IPs) involving the identification of parameters in PDEs, using the framework of Gaussian processes.