ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient and Noise Resilient Measurements for Quantum Chemistry on Near-Term Quantum Computers

180   0   0.0 ( 0 )
 نشر من قبل William Huggins
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Variational algorithms are a promising paradigm for utilizing near-term quantum devices for modeling electronic states of molecular systems. However, previous bounds on the measurement time required have suggested that the application of these techniques to larger molecules might be infeasible. We present a measurement strategy based on a low rank factorization of the two-electron integral tensor. Our approach provides a cubic reduction in term groupings over prior state-of-the-art and enables measurement times three orders of magnitude smaller than those suggested by commonly referenced bounds for the largest systems we consider. Although our technique requires execution of a linear-depth circuit prior to measurement, this is compensated for by eliminating challenges associated with sampling non-local Jordan-Wigner transformed operators in the presence of measurement error, while enabling a powerful form of error mitigation based on efficient postselection. We numerically characterize these benefits with noisy quantum circuit simulations for ground state energies of strongly correlated electronic systems.



قيم البحث

اقرأ أيضاً

We present a quantum chemistry benchmark for noisy intermediate-scale quantum computers that leverages the variational quantum eigensolver, active space reduction, a reduced unitary coupled cluster ansatz, and reduced density purification as error mi tigation. We demonstrate this benchmark on the 20 qubit IBM Tokyo and 16 qubit Rigetti Aspen processors via the simulation of alkali metal hydrides (NaH, KH, RbH),with accuracy of the computed ground state energy serving as the primary benchmark metric. We further parameterize this benchmark suite on the trial circuit type, the level of symmetry reduction, and error mitigation strategies. Our results demonstrate the characteristically high noise level present in near-term superconducting hardware, but provide a relevant baseline for future improvement of the underlying hardware, and a means for comparison across near-term hardware types. We also demonstrate how to reduce the noise in post processing with specific error mitigation techniques. Particularly, the adaptation of McWeeny purification of noisy density matrices dramatically improves accuracy of quantum computations, which, along with adjustable active space, significantly extends the range of accessible molecular systems. We demonstrate that for specific benchmark settings, the accuracy metric can reach chemical accuracy when computing over the cloud on certain quantum computers.
Simulating chemical systems on quantum computers has been limited to a few electrons in a minimal basis. We demonstrate experimentally that the virtual quantum subspace expansion [Phys. Rev. X 10, 011004 (2020)] can achieve full basis accuracy for hy drogen and lithium dimers, comparable to simulations requiring twenty or more qubits. We developed an approach to minimize the impact of experimental noise on the stability of the generalized eigenvalue problem, a crucial component of the quantum algorithm. In addition, we were able to obtain an accurate potential energy curve for the nitrogen dimer in a quantum simulation on a classical computer.
Quantum computers hold promise to enable efficient simulations of the properties of molecules and materials; however, at present they only permit ab initio calculations of a few atoms, due to a limited number of qubits. In order to harness the power of near-term quantum computers for simulations of larger systems, it is desirable to develop hybrid quantum-classical methods where the quantum computation is restricted to a small portion of the system. This is of particular relevance for molecules and solids where an active region requires a higher level of theoretical accuracy than its environment. Here we present a quantum embedding theory for the calculation of strongly-correlated electronic states of active regions, with the rest of the system described within density functional theory. We demonstrate the accuracy and effectiveness of the approach by investigating several defect quantum bits in semiconductors that are of great interest for quantum information technologies. We perform calculations on quantum computers and show that they yield results in agreement with those obtained with exact diagonalization on classical architectures, paving the way to simulations of realistic materials on near-term quantum computers.
Readout errors are a significant source of noise for near term quantum computers. A variety of methods have been proposed to mitigate these errors using classical post processing. For a system with $n$ qubits, the entire readout error profile is spec ified by a $2^ntimes 2^n$ matrix. Recent proposals to use sub-exponential approximations rely on small and/or short-ranged error correlations. In this paper, we introduce and demonstrate a methodology to categorize and quantify multiqubit readout error correlations. Two distinct types of error correlations are considered: sensitivity of the measurement of a given qubit to the state of nearby spectator qubits, and measurement operator covariances. We deploy this methodology on IBMQ quantum computers, finding that error correlations are indeed small compared to the single-qubit readout errors on IBMQ Melbourne (15 qubits) and IBMQ Manhattan (65 qubits), but that correlations on IBMQ Melbourne are long-ranged and do not decay with inter-qubit distance.
Quantum computers are capable of efficiently contracting unitary tensor networks, a task that is likely to remain difficult for classical computers. For instance, networks based on matrix product states or the multi-scale entanglement renormalization ansatz (MERA) can be contracted on a small quantum computer to aid the simulation of a large quantum system. However, without the ability to selectively reset qubits, the associated spatial cost can be exorbitant. In this paper, we propose a protocol that can unitarily reset qubits when the circuit has a common convolutional form, thus dramatically reducing the spatial cost for implementing the contraction algorithm on general near-term quantum computers. This protocol generates fresh qubits from used ones by partially applying the time-reversed quantum circuit over qubits that are no longer in use. In the absence of noise, we prove that the state of a subset of these qubits becomes $|0ldots 0rangle$, up to an error exponentially small in the number of gates applied. We also provide a numerical evidence that the protocol works in the presence of noise. We also provide a numerical evidence that the protocol works in the presence of noise, and formulate a condition under which the noise-resilience follows rigorously.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا