ﻻ يوجد ملخص باللغة العربية
We present a quantum chemistry benchmark for noisy intermediate-scale quantum computers that leverages the variational quantum eigensolver, active space reduction, a reduced unitary coupled cluster ansatz, and reduced density purification as error mitigation. We demonstrate this benchmark on the 20 qubit IBM Tokyo and 16 qubit Rigetti Aspen processors via the simulation of alkali metal hydrides (NaH, KH, RbH),with accuracy of the computed ground state energy serving as the primary benchmark metric. We further parameterize this benchmark suite on the trial circuit type, the level of symmetry reduction, and error mitigation strategies. Our results demonstrate the characteristically high noise level present in near-term superconducting hardware, but provide a relevant baseline for future improvement of the underlying hardware, and a means for comparison across near-term hardware types. We also demonstrate how to reduce the noise in post processing with specific error mitigation techniques. Particularly, the adaptation of McWeeny purification of noisy density matrices dramatically improves accuracy of quantum computations, which, along with adjustable active space, significantly extends the range of accessible molecular systems. We demonstrate that for specific benchmark settings, the accuracy metric can reach chemical accuracy when computing over the cloud on certain quantum computers.
Variational algorithms are a promising paradigm for utilizing near-term quantum devices for modeling electronic states of molecular systems. However, previous bounds on the measurement time required have suggested that the application of these techni
Quantum field theory (QFT) simulations are a potentially important application for noisy intermediate scale quantum (NISQ) computers. The ability of a quantum computer to emulate a QFT, therefore, constitutes a natural application-centric benchmark.
We point out that realization of quantum communication protocols in programmable quantum computers provides a deep benchmark for capabilities of real quantum hardware. Particularly, it is prospective to focus on measurements of entropy-based characte
Simulating chemical systems on quantum computers has been limited to a few electrons in a minimal basis. We demonstrate experimentally that the virtual quantum subspace expansion [Phys. Rev. X 10, 011004 (2020)] can achieve full basis accuracy for hy
Quantum computers hold promise to enable efficient simulations of the properties of molecules and materials; however, at present they only permit ab initio calculations of a few atoms, due to a limited number of qubits. In order to harness the power