We consider symmetric activated random walks on $mathbb{Z}$, and show that the critical density $zeta_c$ satisfies $csqrt{lambda} leq zeta_c(lambda) leq C sqrt{lambda}$ where $lambda$ denotes the sleep rate.
We consider Activated Random Walks on $Z$ with totally asymmetric jumps and critical particle density, with different time scales for the progressive release of particles and the dissipation dynamics. We show that the cumulative flow of particles thr
ough the origin rescales to a pure-jump self-similar process which we describe explicitly.
Some stochastic systems are particularly interesting as they exhibit critical behavior without fine-tuning of a parameter, a phenomenon called self-organized criticality. In the context of driven-dissipative steady states, one of the main models is t
hat of Activated Random Walks. Long-range effects intrinsic to the conservative dynamics and lack of a simple algebraic structure cause standard tools and techniques to break down. This makes the mathematical study of this model remarkably challenging. Yet, some exciting progress has been made in the last ten years, with the development of a framework of tools and methods which is finally becoming more structured. In these lecture notes we present the existing results and reproduce the techniques developed so far.
We consider the Activated Random Walk model on $mathbb{Z}$. In this model, each particle performs a continuous-time simple symmetric random walk, and falls asleep at rate $lambda$. A sleeping particle does not move but it is reactivated in the presen
ce of another particle. We show that for any sleep rate $lambda < infty$ if the density $ zeta $ is close enough to $1$ then the system stays active.
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d ge 3$ and the environment is not too random, then, the total population gro
ws as fast as its expectation with strictly positive probability. If,on the other hand, $d le 2$, or the environment is ``random enough, then the total population grows strictly slower than its expectation almost surely. We show the equivalence between the slow population growth and a natural localization property in terms of replica overlap. We also prove a certain stronger localization property, whenever the total population grows strictly slower than its expectation almost surely.