ترغب بنشر مسار تعليمي؟ اضغط هنا

Activated Random Walks

303   0   0.0 ( 0 )
 نشر من قبل Leonardo Rolla
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Leonardo T. Rolla




اسأل ChatGPT حول البحث

Lecture Notes. Minicourse given at the workshop Activated Random Walks, DLA, and related topics at IMeRA-Marseille, March 2015.



قيم البحث

اقرأ أيضاً

We consider Activated Random Walks on $Z$ with totally asymmetric jumps and critical particle density, with different time scales for the progressive release of particles and the dissipation dynamics. We show that the cumulative flow of particles thr ough the origin rescales to a pure-jump self-similar process which we describe explicitly.
200 - Leonardo T. Rolla 2019
Some stochastic systems are particularly interesting as they exhibit critical behavior without fine-tuning of a parameter, a phenomenon called self-organized criticality. In the context of driven-dissipative steady states, one of the main models is t hat of Activated Random Walks. Long-range effects intrinsic to the conservative dynamics and lack of a simple algebraic structure cause standard tools and techniques to break down. This makes the mathematical study of this model remarkably challenging. Yet, some exciting progress has been made in the last ten years, with the development of a framework of tools and methods which is finally becoming more structured. In these lecture notes we present the existing results and reproduce the techniques developed so far.
We prove that the model of Activated Random Walks on Z^d with biased jump distribution does not fixate for any positive density, if the sleep rate is small enough, as well as for any finite sleep rate, if the density is close enough to 1. The proof u ses a new criterion for non-fixation. We provide a pathwise construction of the process, of independent interest, used in the proof of this non-fixation criterion.
We consider symmetric activated random walks on $mathbb{Z}$, and show that the critical density $zeta_c$ satisfies $csqrt{lambda} leq zeta_c(lambda) leq C sqrt{lambda}$ where $lambda$ denotes the sleep rate.
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Ko zma and Wormald, to have order $log^2 n$. We prove that starting from a uniform vertex (equivalently, from a fixed vertex conditioned to belong to the giant) both accelerates mixing to $O(log n)$ and concentrates it (the cutoff phenomenon occurs): the typical mixing is at $( u {bf d})^{-1}log n pm (log n)^{1/2+o(1)}$, where $ u$ and ${bf d}$ are the speed of random walk and dimension of harmonic measure on a ${rm Poisson}(lambda)$-Galton-Watson tree. Analogous results are given for graphs with prescribed degree sequences, where cutoff is shown both for the simple and for the non-backtracking random walk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا