ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Transformer for Single Image Super-Resolution

108   0   0.0 ( 0 )
 نشر من قبل Juncheng Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Single image super-resolution task has witnessed great strides with the development of deep learning. However, most existing studies focus on building a more complex neural network with a massive number of layers, bringing heavy computational cost and memory storage. Recently, as Transformer yields brilliant results in NLP tasks, more and more researchers start to explore the application of Transformer in computer vision tasks. But with the heavy computational cost and high GPU memory occupation of the vision Transformer, the network can not be designed too deep. To address this problem, we propose a novel Efficient Super-Resolution Transformer (ESRT) for fast and accurate image super-resolution. ESRT is a hybrid Transformer where a CNN-based SR network is first designed in the front to extract deep features. Specifically, there are two backbones for formatting the ESRT: lightweight CNN backbone (LCB) and lightweight Transformer backbone (LTB). Among them, LCB is a lightweight SR network to extract deep SR features at a low computational cost by dynamically adjusting the size of the feature map. LTB is made up of an efficient Transformer (ET) with a small GPU memory occupation, which benefited from the novel efficient multi-head attention (EMHA). In EMHA, a feature split module (FSM) is proposed to split the long sequence into sub-segments and then these sub-segments are applied by attention operation. This module can significantly decrease the GPU memory occupation. Extensive experiments show that our ESRT achieves competitive results. Compared with the original Transformer which occupies 16057M GPU memory, the proposed ET only occupies 4191M GPU memory with better performance.

قيم البحث

اقرأ أيضاً

Modern solutions to the single image super-resolution (SISR) problem using deep neural networks aim not only at better performance accuracy but also at a lighter and computationally efficient model. To that end, recently, neural architecture search ( NAS) approaches have shown some tremendous potential. Following the same underlying, in this paper, we suggest a novel trilevel NAS method that provides a better balance between different efficiency metrics and performance to solve SISR. Unlike available NAS, our search is more complete, and therefore it leads to an efficient, optimized, and compressed architecture. We innovatively introduce a trilevel search space modeling, i.e., hierarchical modeling on network-, cell-, and kernel-level structures. To make the search on trilevel spaces differentiable and efficient, we exploit a new sparsestmax technique that is excellent at generating sparse distributions of individual neural architecture candidates so that they can be better disentangled for the final selection from the enlarged search space. We further introduce the sorting technique to the sparsestmax relaxation for better network-level compression. The proposed NAS optimization additionally facilitates simultaneous search and training in a single phase, reducing search time and train time. Comprehensive evaluations on the benchmark datasets show our methods clear superiority over the state-of-the-art NAS in terms of a good trade-off between model size, performance, and efficiency.
We propose a novel single-image super-resolution approach based on the geostatistical method of kriging. Kriging is a zero-bias minimum-variance estimator that performs spatial interpolation based on a weighted average of known observations. Rather t han solving for the kriging weights via the traditional method of inverting covariance matrices, we propose a supervised form in which we learn a deep network to generate said weights. We combine the kriging weight generation and kriging process into a joint network that can be learned end-to-end. Our network achieves competitive super-resolution results as other state-of-the-art methods. In addition, since the super-resolution process follows a known statistical framework, we are able to estimate bias and variance, something which is rarely possible for other deep networks.
Hyperspectral image has become increasingly crucial due to its abundant spectral information. However, It has poor spatial resolution with the limitation of the current imaging mechanism. Nowadays, many convolutional neural networks have been propose d for the hyperspectral image super-resolution problem. However, convolutional neural network (CNN) based methods only consider the local information instead of the global one with the limited kernel size of receptive field in the convolution operation. In this paper, we design a network based on the transformer for fusing the low-resolution hyperspectral images and high-resolution multispectral images to obtain the high-resolution hyperspectral images. Thanks to the representing ability of the transformer, our approach is able to explore the intrinsic relationships of features globally. Furthermore, considering the LR-HSIs hold the main spectral structure, the network focuses on the spatial detail estimation releasing from the burden of reconstructing the whole data. It reduces the mapping space of the proposed network, which enhances the final performance. Various experiments and quality indexes show our approachs superiority compared with other state-of-the-art methods.
Current CNN-based super-resolution (SR) methods process all locations equally with computational resources being uniformly assigned in space. However, since missing details in low-resolution (LR) images mainly exist in regions of edges and textures, less computational resources are required for those flat regions. Therefore, existing CNN-based methods involve redundant computation in flat regions, which increases their computational cost and limits their applications on mobile devices. In this paper, we explore the sparsity in image SR to improve inference efficiency of SR networks. Specifically, we develop a Sparse Mask SR (SMSR) network to learn sparse masks to prune redundant computation. Within our SMSR, spatial masks learn to identify important regions while channel masks learn to mark redundant channels in those unimportant regions. Consequently, redundant computation can be accurately localized and skipped while maintaining comparable performance. It is demonstrated that our SMSR achieves state-of-the-art performance with 41%/33%/27% FLOPs being reduced for x2/3/4 SR. Code is available at: https://github.com/LongguangWang/SMSR.
Video super-resolution (VSR), with the aim to restore a high-resolution video from its corresponding low-resolution version, is a spatial-temporal sequence prediction problem. Recently, Transformer has been gaining popularity due to its parallel comp uting ability for sequence-to-sequence modeling. Thus, it seems to be straightforward to apply the vision Transformer to solve VSR. However, the typical block design of Transformer with a fully connected self-attention layer and a token-wise feed-forward layer does not fit well for VSR due to the following two reasons. First, the fully connected self-attention layer neglects to exploit the data locality because this layer relies on linear layers to compute attention maps. Second, the token-wise feed-forward layer lacks the feature alignment which is important for VSR since this layer independently processes each of the input token embeddings without any interaction among them. In this paper, we make the first attempt to adapt Transformer for VSR. Specifically, to tackle the first issue, we present a spatial-temporal convolutional self-attention layer with a theoretical understanding to exploit the locality information. For the second issue, we design a bidirectional optical flow-based feed-forward layer to discover the correlations across different video frames and also align features. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our proposed method. The code will be available at https://github.com/caojiezhang/VSR-Transformer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا