ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling quantum aspects of disruption of a white dwarf star by a black hole

56   0   0.0 ( 0 )
 نشر من قبل Marek Nikolajuk
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tomasz Karpiuk




اسأل ChatGPT حول البحث

We study the final stages of the evolution of a binary system consisted of a black hole and a white dwarf star. We implement the quantum hydrodynamic equations and carry out numerical simulations. As a model of a white dwarf star, we consider a zero temperature droplet of attractively interacting degenerate atomic bosons and spin-polarized atomic fermions. Such mixtures are investigated experimentally nowadays. We find that the white dwarf star is stripped off its mass while passing the periastron. Due to nonlinear effects, the accretion disk originated from the white dwarf becomes fragmented and the onset of a quantum turbulence with giant quantized vortices present in the bosonic component of the accretion disk is observed. The binary system ends its life in a spectacular way, revealing quantum features underlying the white dwarf stars structure. We find a charged mass, falling onto a black hole, could be responsible for recently discovered ultraluminous X-ray bursts. The simulations show that the final passage of a white dwarf near a black hole can cause a gamma-ray burst.

قيم البحث

اقرأ أيضاً

We consider misaligned accretion discs formed after tidal disruption events occurring when a star encounters a supermassive rotating black hole. We use the linear theory of warped accretion discs to find the disc shape when the stream produced by the disrupted star provides a source of mass and angular momentum that is misaligned with the black hole. The evolution of the surface density and aspect ratio is found from a one dimensional vertically averaged model. We extend previous work which assumed a quasi-stationary disc to allow unrestricted dynamical propagation of disc tilt and twist through time dependent backgrounds. We consider a smaller value of the viscosity parameter, $alpha =0.01,$ finding the dynamics varies significantly. At early times the disc inclination is found to be nearly uniform at small radii where the aspect ratio is large. However, since torques arise from the Lense-Thirring effect and the stream there is non uniform precession. We propose a simple model for this requiring only the background surface density and aspect ratio. At these times the $alpha sim 0.01$ disc exhibits a new feature. An inclined hot inner region joins an outer low inclination cool region via a thin transition front propagating outwards with a speed exceeding that of bending waves in the cool region. These waves accumulate where the propagation speeds match producing an inclination spike separating inner and outer discs. At late times a sequence of quasi-stationary configurations approximates disc shapes at small radii. We discuss observational implications of our results.
127 - F. K. Liu 2009
Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing Lambda cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nucle i is essential in identifying the binaries in observations from the IR band through optical to X-ray. Recently, the flares in optical, UV, and X-ray caused by supermassive black holes (SMBHs) tidally disrupting nearby stars have been successfully used to observationally probe single SMBHs in normal galaxies. In this Letter, we investigate the accretion of the gaseous debris of a tidally disrupted star by a SMBHB. Using both stability analysis of three-body systems and numerical scattering experiments, we show that the accretion of stellar debris gas, which initially decays with time $propto t^{-5/3}$, would stop at a time $T_{rm tr} simeq eta T_{rm b}$. Here, $eta sim0.25$ and $T_{rm b}$ is the orbital period of the SMBHB. After a period of interruption, the accretion recurs discretely at time $T_{rm r} simeq xi T_b$, where $xi sim 1$. Both $eta$ and $xi$ sensitively depend on the orbital parameters of the tidally disrupted star at the tidal radius and the orbit eccentricity of SMBHB. The interrupted accretion of the stellar debris gas gives rise to an interrupted tidal flare, which could be used to identify SMBHBs in non-active galaxies in the upcoming transient surveys.
We report on the results of a 4-year timing campaign of PSR~J2222$-0137$, a 2.44-day binary pulsar with a massive white dwarf (WD) companion, with the Nanc{c}ay, Effelsberg and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass $m_{p}=1.76,pm,0.06,M_odot$ and a WD mass $m_{c},=,1.293,pm,0.025, M_odot$. We also measure the rate of advance of periastron for this system, which is marginally consistent with the GR prediction for these masses. The short lifetime of the massive WD progenitor star led to a rapid X-ray binary phase with little ($< , 10^{-2} , M_odot$) mass accretion onto the neutron star (NS); hence, the current pulsar mass is, within uncertainties, its birth mass; the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR~J2222$-0137$ puts that system into a poorly tested parameter range.
Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries o f its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.
Tidal forces close to massive black holes can violently disrupt stars that make a close approach. These extreme events are discovered via bright X-ray and optical/UV flares in galactic centers. Prior studies based on modeling decaying flux trends hav e been able to estimate broad properties, such as the mass accretion rate. Here we report the detection of flows of highly ionized X-ray gas in high-resolution X-ray spectra of a nearby tidal disruption event. Variability within the absorption-dominated spectra indicates that the gas is relatively close to the black hole. Narrow line widths indicate that the gas does not stretch over a large range of radii, giving a low volume filling factor. Modest outflow speeds of a few hundred kilometers per second are observed, significantly below the escape speed from the radius set by variability. The gas flow is consistent with a rotating wind from the inner, super-Eddington region of a nascent accretion disk, or with a filament of disrupted stellar gas near to the apocenter of an elliptical orbit. Flows of this sort are predicted by fundamental analytical theory and more recent numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا