ترغب بنشر مسار تعليمي؟ اضغط هنا

A Massive-born Neutron Star with a Massive White Dwarf Companion

213   0   0.0 ( 0 )
 نشر من قبل Paulo C. Freire
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the results of a 4-year timing campaign of PSR~J2222$-0137$, a 2.44-day binary pulsar with a massive white dwarf (WD) companion, with the Nanc{c}ay, Effelsberg and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass $m_{p}=1.76,pm,0.06,M_odot$ and a WD mass $m_{c},=,1.293,pm,0.025, M_odot$. We also measure the rate of advance of periastron for this system, which is marginally consistent with the GR prediction for these masses. The short lifetime of the massive WD progenitor star led to a rapid X-ray binary phase with little ($< , 10^{-2} , M_odot$) mass accretion onto the neutron star (NS); hence, the current pulsar mass is, within uncertainties, its birth mass; the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR~J2222$-0137$ puts that system into a poorly tested parameter range.



قيم البحث

اقرأ أيضاً

147 - Grant N. Remmen , Kinwah Wu 2013
We investigate the orbital dynamics of hierarchical three-body systems containing a double neutron star system orbiting around a massive black hole. These systems show complex dynamical behaviour because of relativistic coupling between orbits of the neutron stars in the double neutron star system and the orbit of the double neutron star system around the black hole. The orbital motion of the neutron stars around each other drives a loop mass current, which gives rise to gravito-magnetism. Generally, gravito-magnetism involves a rotating black hole. The hierarchical three-body system that we consider is an unusual situation in which black hole rotation is not required. Using a gravito-electromagnetic formulation, we calculate the orbital precession and nutation of the double neutron star system. These precession and nutation effects are observable, thus providing probes to the spacetime around black holes as well as tests of gravito-electromagnetism in the framework of general relativity.
We report on timing observations of the recently discovered binary pulsar PSR J1952+2630 using the Arecibo Observatory. The mildly recycled 20.7-ms pulsar is in a 9.4-hr orbit with a massive, M_WD > 0.93 M_sun, white dwarf (WD) companion. We present, for the first time, a phase-coherent timing solution, with precise spin, astrometric, and Keplerian orbital parameters. This shows that the characteristic age of PSR J1952+2630 is 77 Myr, younger by one order of magnitude than any other recycled pulsar-massive WD system. We derive an upper limit on the true age of the system of 50 Myr. We investigate the formation of PSR J1952+2630 using detailed modelling of the mass-transfer process from a naked helium star on to the neutron star following a common-envelope phase (Case BB Roche-lobe overflow). From our modelling of the progenitor system, we constrain the accretion efficiency of the neutron star, which suggests a value between 100 and 300% of the Eddington accretion limit. We present numerical models of the chemical structure of a possible oxygen-neon-magnesium WD companion. Furthermore, we calculate the past and the future spin evolution of PSR J1952+2630, until the system merges in about 3.4 Gyr due to gravitational wave emission. Although we detect no relativistic effects in our timing analysis we show that several such effects will become measurable with continued observations over the next 10 years; thus PSR J1952+2630 has potential as a testbed for gravitational theories.
The most massive neutron stars constrain the behavior of ultra-dense matter, with larger masses possible only for increasingly stiff equations of state. Here, we present evidence that the black widow pulsar, PSR B1957+20, has a high mass. We took spe ctra of its strongly irradiated companion and found an observed radial-velocity amplitude of K_obs=324+/-3 km/s. Correcting this for the fact that, due to the irradiation, the center of light lies inward relative to the center of mass, we infer a true radial-velocity amplitude of K_2=353+/-4 km/s and a mass ratio q=M_PSR/M_2=69.2+/-0.8. Combined with the inclination i=65+/-2 deg inferred from models of the lightcurve, our best-fit pulsar mass is M_PSR=2.40+/-0.12 M_sun. We discuss possible systematic uncertainties, in particular in the lightcurve modeling. Taking an upper limit of i<85 deg based on the absence of radio eclipses at high frequency, combined with a conservative lower-limit to the motion of the center of mass, K_2>343 km/s (q>67.3), we infer a lower limit to the pulsar mass of M_PSR>1.66 M_sun.
To understand the nature of supernovae and neutron star (NS) formation, as well as binary stellar evolution and their interactions, it is important to probe the distribution of NS masses. Until now, all double NS (DNS) systems have been measured to h ave a mass ratio close to unity (q $geq$ 0.91). Here we report the measurement of the individual masses of the 4.07-day binary pulsar J0453+1559 from measurements of the rate of advance of periastron and Shapiro delay: The mass of the pulsar is 1.559(5) $M_{odot}$ and that of its companion is 1.174(4) $M_{odot}$; q = 0.75. If this companion is also a neutron star (NS), as indicated by the orbital eccentricity of the system (e=0.11), then its mass is the smallest precisely measured for any such object. The pulsar has a spin period of 45.7 ms and a spin derivative of 1.8616(7) x$10^-19$; from these we derive a characteristic age of ~ 4.1 x $10^9$ years and a magnetic field of ~ 2.9 x $10^9$ G,i.e, this pulsar was mildly recycled by accretion of matter from the progenitor of the companion star. This suggests that it was formed with (very approximately) its current mass. Thus NSs form with a wide range of masses, which is important for understanding their formation in supernovae. It is also important for the search for gravitational waves released during a NS-NS merger: it is now evident that we should not assume all DNS systems are symmetric.
176 - Jay Strader 2015
We present multiwavelength observations of the persistent Fermi-LAT unidentified gamma-ray source 1FGL J1417.7-4407, showing it is likely to be associated with a newly discovered X-ray binary containing a massive neutron star (nearly 2 M_sun) and a ~ 0.35 M_sun giant secondary with a 5.4 day period. SOAR optical spectroscopy at a range of orbital phases reveals variable double-peaked H-alpha emission, consistent with the presence of an accretion disk. The lack of radio emission and evidence for a disk suggests the gamma-ray emission is unlikely to originate in a pulsar magnetosphere, but could instead be associated with a pulsar wind, relativistic jet, or could be due to synchrotron self-Compton at the disk--magnetosphere boundary. Assuming a wind or jet, the high ratio of gamma-ray to X-ray luminosity (~ 20) suggests efficient production of gamma-rays, perhaps due to the giant companion. The system appears to be a low-mass X-ray binary that has not yet completed the pulsar recycling process. This system is a good candidate to monitor for a future transition between accretion-powered and rotational-powered states, but in the context of a giant secondary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا