ترغب بنشر مسار تعليمي؟ اضغط هنا

BOPcat software package for the construction and testing of tight-binding models and bond-order potentials

158   0   0.0 ( 0 )
 نشر من قبل Thomas Hammerschmidt
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomistic models like tight-binding (TB), bond-order potentials (BOP) and classical potentials describe the interatomic interaction in terms of mathematical functions with parameters that need to be adjusted for a particular material. The procedures for constructing TB/BOP models differ from the ones for classical potentials. We developed the BOPcat software package as a modular python code for the construction and testing of TB/BOP parameterizations. It makes use of atomic energies, forces and stresses obtained by TB/BOP calculations with the BOPfox software package. It provides a graphical user interface and flexible control of raw reference data, of derived reference data like defect energies, of automated construction and testing protocols, and of parallel execution in queuing systems. We outline the concepts and usage of the BOPcat software and illustrate its key capabilities by exemplary constructing and testing of an analytic BOP for Fe. The parameterization protocol with a successively increasing set of reference data leads to a magnetic BOP that is transferable to a variety of properties of the ferromagnetic bcc groundstate and to crystal structures that were not part of the training set.



قيم البحث

اقرأ أيضاً

We present a novel open-source Python framework called NanoNET (Nanoscale Non-equilibrium Electron Transport) for modelling electronic structure and transport. Our method is based on the tight-binding method and non-equilibrium Greens function theory . The core functionality of the framework is providing facilities for efficient construction of tight-binding Hamiltonian matrices from a list of atomic coordinates and a lookup table of the two-center integrals in dense, sparse, or block-tridiagonal forms. The framework implements a method based on $kd$-tree nearest-neighbour search and is applicable to isolated atomic clusters and periodic structures. A set of subroutines for detecting the block-tridiagonal structure of a Hamiltonian matrix and splitting it into series of diagonal and off-diagonal blocks is based on a new greedy algorithm with recursion. Additionally the developed software is equipped with a set of programs for computing complex band structure, self-energies of elastic scattering processes, and Greens functions. Examples of usage and capabilities of the computational framework are illustrated by computing the band structure and transport properties of a silicon nanowire as well as the band structure of bulk bismuth.
In $TmB_4$, localized electrons with a large magnetic moment interact with metallic electrons in boron-derived bands. We examine the nature of $TmB_4$ using full-relativistic ab-initio density functional theory calculations, approximate tight-binding Hamiltonian results, and the development of an effective Kondo-Ising model for this system. Features of the Fermi surface relating to the anisotropic conduction of charge are discussed. The observed magnetic moment $sim 6 , mu_B$ is argued to require a subtle crystal field effect in metallic systems, involving a flipped sign of the effective charges surrounding a Tm ion. The role of on-site quantum dynamics in the resulting Kondo-Ising type impurity model are highlighted. From this model, elimination of the conduction electrons will lead to spin-spin (RKKY-type) interaction of Ising character required to understand the observed fractional magnetization plateaus in $TmB_4$.
We present a Mathematica program package MagneticTB, which can generate the tight-binding model for arbitrary magnetic space group. The only input parameters in MagneticTB are the (magnetic) space group number and the orbital information in each Wyck off positions. Some useful functions including getting the matrix expression for symmetry operators, manipulating the energy band structure by parameters and interfacing with other software are also developed. MagneticTB can help to investigate the physical properties in both magnetic and non-magnetic system, especially for topological properties.
We consider atomistic geometry relaxation in the context of linear tight binding models for point defects. A limiting model as Fermi-temperature is sent to zero is formulated, and an exponential rate of convergence for the nuclei configuration is est ablished. We also formulate the thermodynamic limit model at zero Fermi-temperature, extending the results of [H. Chen, J. Lu, C. Ortner. Arch. Ration. Mech. Anal., 2018]. We discuss the non-trivial relationship between taking zero temperature and thermodynamic limits in the finite Fermi-temperature models.
Wannier tight-binding models are effective models constructed from first-principles calculations. As such, they bridge a gap between the accuracy of first-principles calculations and the computational simplicity of effective models. In this work, we extend the existing methodology of creating Wannier tight-binding models from first-principles calculations by introducing the symmetrization post-processing step, which enables the production of Wannier-like models that respect the symmetries of the considered crystal. Furthermore, we implement automatic workflows, which allow for producing a large number of tight-binding models for large classes of chemically and structurally similar compounds, or materials subject to external influence such as strain. As a particular illustration, these workflows are applied to strained III-V semiconductor materials. These results can be used for further study of topological phase transitions in III-V quantum wells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا