ﻻ يوجد ملخص باللغة العربية
Most of the existing approaches focus on specific visual tasks while ignoring the relations between them. Estimating task relation sheds light on the learning of high-order semantic concepts, e.g., transfer learning. How to reveal the underlying relations between different visual tasks remains largely unexplored. In this paper, we propose a novel textbf{L}earnable textbf{P}arameter textbf{S}imilarity (textbf{LPS}) method that learns an effective metric to measure the similarity of second-order semantics hidden in trained models. LPS is achieved by using a second-order neural network to align high-dimensional model parameters and learning second-order similarity in an end-to-end way. In addition, we create a model set called ModelSet500 as a parameter similarity learning benchmark that contains 500 trained models. Extensive experiments on ModelSet500 validate the effectiveness of the proposed method. Code will be released at url{https://github.com/Wanggcong/learnable-parameter-similarity}.
We present a novel resizing module for neural networks: shape adaptor, a drop-in enhancement built on top of traditional resizing layers, such as pooling, bilinear sampling, and strided convolution. Whilst traditional resizing layers have fixed and d
Sparsity in Deep Neural Networks (DNNs) is studied extensively with the focus of maximizing prediction accuracy given an overall parameter budget. Existing methods rely on uniform or heuristic non-uniform sparsity budgets which have sub-optimal layer
Inner product-based convolution has been the founding stone of convolutional neural networks (CNNs), enabling end-to-end learning of visual representation. By generalizing inner product with a bilinear matrix, we propose the neural similarity which s
Existing approaches to few-shot learning deal with tasks that have persistent, rigid notions of classes. Typically, the learner observes data only from a fixed number of classes at training time and is asked to generalize to a new set of classes at t
To address the limitations of existing magnitude-based pruning algorithms in cases where model weights or activations are of large and similar magnitude, we propose a novel perspective to discover parameter redundancy among channels and accelerate de