ﻻ يوجد ملخص باللغة العربية
Electromagnetic (EM) scattering systems widely exist in EM engineering domain. For a certain objective scattering system, all of its working modes constitute a linear space, i.e. modal space. Characteristic mode theory (CMT) can effectively construct a basis of the space, i.e. characteristic modes (CMs), and the CMs only depend on the inherent physical properties of the objective system, such as the topological structure and the material parameter of the objective system. Thus, CMT is very valuable for analyzing and designing the inherent EM scattering characters of the objective system. This work finds out that integral equation (IE) is not the best framework for carrying CMT. This dissertation proposes a completely new framework for carrying CMT, i.e. work-energy principle (WEP) framework, and at the same time proposes a completely new method for constructing CMs, i.e. orthogonalizing driving power operator (DPO) method. In new WEP framework and based on new orthogonalizing DPO method, this work resolves 5 pairs of important unsolved problems existing in CMT domain.
This paper derives a finite-strain plate theory consistent with the principle of stationary three-dimensional (3-D) potential energy under general loadings with a third-order error. Staring from the 3-D nonlinear elasticity (with both geometrical and
The physical pictures of eigen-mode theory (EMT) and the conventional characteristic mode theory (CMT) reveal a fact that: the EMT and CMT are the modal theories for electromagnetic wave-guiding and scattering (for details, please see the Appendices
A unification of characteristic mode decomposition for all method-of-moment formulations of field integral equations describing free-space scattering is derived. The work is based on an algebraic link between impedance and transition matrices, the la
We present a complete analytical derivation of the equations used for stationary and nonstationary wave systems regarding resonant sound transmission and reflection described by the phenomenological Coupled-Mode Theory. We calculate the propagating a
For closed quantum systems driven away from equilibrium, work is often defined in terms of projective measurements of initial and final energies. This definition leads to statistical distributions of work that satisfy nonequilibrium work and fluctuat