ترغب بنشر مسار تعليمي؟ اضغط هنا

Using 3D Convolutional Neural Networks to Learn Spatiotemporal Features for Automatic Surgical Gesture Recognition in Video

66   0   0.0 ( 0 )
 نشر من قبل Isabel Funke
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatically recognizing surgical gestures is a crucial step towards a thorough understanding of surgical skill. Possible areas of application include automatic skill assessment, intra-operative monitoring of critical surgical steps, and semi-automation of surgical tasks. Solutions that rely only on the laparoscopic video and do not require additional sensor hardware are especially attractive as they can be implemented at low cost in many scenarios. However, surgical gesture recognition based only on video is a challenging problem that requires effective means to extract both visual and temporal information from the video. Previous approaches mainly rely on frame-wise feature extractors, either handcrafted or learned, which fail to capture the dynamics in surgical video. To address this issue, we propose to use a 3D Convolutional Neural Network (CNN) to learn spatiotemporal features from consecutive video frames. We evaluate our approach on recordings of robot-assisted suturing on a bench-top model, which are taken from the publicly available JIGSAWS dataset. Our approach achieves high frame-wise surgical gesture recognition accuracies of more than 84%, outperforming comparable models that either extract only spatial features or model spatial and low-level temporal information separately. For the first time, these results demonstrate the benefit of spatiotemporal CNNs for video-based surgical gesture recognition.



قيم البحث

اقرأ أيضاً

There is a warning light for the loss of plant habitats worldwide that entails concerted efforts to conserve plant biodiversity. Thus, plant species classification is of crucial importance to address this environmental challenge. In recent years, the re is a considerable increase in the number of studies related to plant taxonomy. While some researchers try to improve their recognition performance using novel approaches, others concentrate on computational optimization for their framework. In addition, a few studies are diving into feature extraction to gain significantly in terms of accuracy. In this paper, we propose an effective method for the leaf recognition problem. In our proposed approach, a leaf goes through some pre-processing to extract its refined color image, vein image, xy-projection histogram, handcrafted shape, texture features, and Fourier descriptors. These attributes are then transformed into a better representation by neural network-based encoders before a support vector machine (SVM) model is utilized to classify different leaves. Overall, our approach performs a state-of-the-art result on the Flavia leaf dataset, achieving the accuracy of 99.58% on test sets under random 10-fold cross-validation and bypassing the previous methods. We also release our codes (Scripts are available at https://github.com/dinhvietcuong1996/LeafRecognition) for contributing to the research community in the leaf classification problem.
Recently, the connectionist temporal classification (CTC) model coupled with recurrent (RNN) or convolutional neural networks (CNN), made it easier to train speech recognition systems in an end-to-end fashion. However in real-valued models, time fram e components such as mel-filter-bank energies and the cepstral coefficients obtained from them, together with their first and second order derivatives, are processed as individual elements, while a natural alternative is to process such components as composed entities. We propose to group such elements in the form of quaternions and to process these quaternions using the established quaternion algebra. Quaternion numbers and quaternion neural networks have shown their efficiency to process multidimensional inputs as entities, to encode internal dependencies, and to solve many tasks with less learning parameters than real-valued models. This paper proposes to integrate multiple feature views in quaternion-valued convolutional neural network (QCNN), to be used for sequence-to-sequence mapping with the CTC model. Promising results are reported using simple QCNNs in phoneme recognition experiments with the TIMIT corpus. More precisely, QCNNs obtain a lower phoneme error rate (PER) with less learning parameters than a competing model based on real-valued CNNs.
238 - R. Maqsood , UI. Bajwa , G. Saleem 2021
Anomalous activity recognition deals with identifying the patterns and events that vary from the normal stream. In a surveillance paradigm, these events range from abuse to fighting and road accidents to snatching, etc. Due to the sparse occurrence o f anomalous events, anomalous activity recognition from surveillance videos is a challenging research task. The approaches reported can be generally categorized as handcrafted and deep learning-based. Most of the reported studies address binary classification i.e. anomaly detection from surveillance videos. But these reported approaches did not address other anomalous events e.g. abuse, fight, road accidents, shooting, stealing, vandalism, and robbery, etc. from surveillance videos. Therefore, this paper aims to provide an effective framework for the recognition of different real-world anomalies from videos. This study provides a simple, yet effective approach for learning spatiotemporal features using deep 3-dimensional convolutional networks (3D ConvNets) trained on the University of Central Florida (UCF) Crime video dataset. Firstly, the frame-level labels of the UCF Crime dataset are provided, and then to extract anomalous spatiotemporal features more efficiently a fine-tuned 3D ConvNets is proposed. Findings of the proposed study are twofold 1)There exist specific, detectable, and quantifiable features in UCF Crime video feed that associate with each other 2) Multiclass learning can improve generalizing competencies of the 3D ConvNets by effectively learning frame-level information of dataset and can be leveraged in terms of better results by applying spatial augmentation.
Defining methods for the automatic understanding of gestures is of paramount importance in many application contexts and in Virtual Reality applications for creating more natural and easy-to-use human-computer interaction methods. In this paper, we p resent a method for the recognition of a set of non-static gestures acquired through the Leap Motion sensor. The acquired gesture information is converted in color images, where the variation of hand joint positions during the gesture are projected on a plane and temporal information is represented with color intensity of the projected points. The classification of the gestures is performed using a deep Convolutional Neural Network (CNN). A modified version of the popular ResNet-50 architecture is adopted, obtained by removing the last fully connected layer and adding a new layer with as many neurons as the considered gesture classes. The method has been successfully applied to the existing reference dataset and preliminary tests have already been performed for the real-time recognition of dynamic gestures performed by users.
153 - Peter Li , Jiyuan Qian , Tian Wang 2015
Traditional methods to tackle many music information retrieval tasks typically follow a two-step architecture: feature engineering followed by a simple learning algorithm. In these shallow architectures, feature engineering and learning are typically disjoint and unrelated. Additionally, feature engineering is difficult, and typically depends on extensive domain expertise. In this paper, we present an application of convolutional neural networks for the task of automatic musical instrument identification. In this model, feature extraction and learning algorithms are trained together in an end-to-end fashion. We show that a convolutional neural network trained on raw audio can achieve performance surpassing traditional methods that rely on hand-crafted features.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا