ﻻ يوجد ملخص باللغة العربية
As a pixel-level prediction task, semantic segmentation needs large computational cost with enormous parameters to obtain high performance. Recently, due to the increasing demand for autonomous systems and robots, it is significant to make a tradeoff between accuracy and inference speed. In this paper, we propose a novel Depthwise Asymmetric Bottleneck (DAB) module to address this dilemma, which efficiently adopts depth-wise asymmetric convolution and dilated convolution to build a bottleneck structure. Based on the DAB module, we design a Depth-wise Asymmetric Bottleneck Network (DABNet) especially for real-time semantic segmentation, which creates sufficient receptive field and densely utilizes the contextual information. Experiments on Cityscapes and CamVid datasets demonstrate that the proposed DABNet achieves a balance between speed and precision. Specifically, without any pretrained model and postprocessing, it achieves 70.1% Mean IoU on the Cityscapes test dataset with only 0.76 million parameters and a speed of 104 FPS on a single GTX 1080Ti card.
We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the weights at each decoder block vary spatially. For this
BiSeNet has been proved to be a popular two-stream network for real-time segmentation. However, its principle of adding an extra path to encode spatial information is time-consuming, and the backbones borrowed from pretrained tasks, e.g., image class
Semantic segmentation requires both rich spatial information and sizeable receptive field. However, modern approaches usually compromise spatial resolution to achieve real-time inference speed, which leads to poor performance. In this paper, we addre
We present FasterSeg, an automatically designed semantic segmentation network with not only state-of-the-art performance but also faster speed than current methods. Utilizing neural architecture search (NAS), FasterSeg is discovered from a novel and
In deep CNN based models for semantic segmentation, high accuracy relies on rich spatial context (large receptive fields) and fine spatial details (high resolution), both of which incur high computational costs. In this paper, we propose a novel arch