ﻻ يوجد ملخص باللغة العربية
Passing through the Galactic disk, a massive object such as a globular cluster, can trigger star formation process leading to the birth of open clusters. Here, we analyze such possible evolutionary relationship between globular and open clusters. To search for the closest rapprochement between objects we computed backwards the orbits of 150 Galactic globular and 232 open clusters (younger than 100 Myr) with proper motions, derived from the Gaia DR2 Catalog. The orbits were computed using the recently modified three-component (disk, bulge and halo) axisymmetric Navarro-Frenk-White potential, which was complemented by non-axisymmetric bar and spiral density wave potentials. We obtained a new estimate for the frequency of impacts of globular clusters about the Galactic disk, which is equal to 4 events for 1 million years. In the framework of the considered scenario, we highlight the following nine pairs of globular and open clusters, with rapprochement within 1 kpc at the time of the intersection the Galactic disk by a globular cluster for the latest 100 Myr: NGC 104 - Turner 3, NGC 104 - NGC 6396, NGC 104 - Ruprecht 127, NGC 5139 - Trumpler 17, NGC 5139 - NGC 6520, NGC 6341 - NGC 6613, NGC 6838 - NGC 6520, NGC 7078 - NGC 7063, NGC 6760 - Ruprecht 127.
We employ Gaia DR2 proper motions for 151 Milky Way globular clusters from Vasiliev (2019) in tandem with distances and line-of-sight velocities to derive their kinematical properties. To assign clusters to the Milky Way thick disk, bulge, and halo w
We have derived the mean proper motions and space velocities of 154 Galactic globular clusters and the velocity dispersion profiles of 141 globular clusters based on a combination of Gaia DR2 proper motions with ground-based line-of-sight velocities.
Open clusters are key targets for both Galaxy structure and evolution and stellar physics studies. Since textit{Gaia} DR2 publication, the discovery of undetected clusters has proven that our samples were not complete. Our aim is to exploit the Big D
Line-of-sight kinematic studies indicate that many Galactic globular clusters have a significant degree of internal rotation. However, three-dimensional kinematics from a combination of proper motions and line-of-sight velocities are needed to unveil
Very precise observational data are needed for studying the stellar cluster parameters (distance, reddening, age, metallicity) and cluster internal kinematics. In turn, these give us an insight into the properties of our Galaxy, for example, by givin