ترغب بنشر مسار تعليمي؟ اضغط هنا

Traveling wave solutions of some important Wick-type fractional stochastic nonlinear partial differential equations

90   0   0.0 ( 0 )
 نشر من قبل Delfim F. M. Torres
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, exact traveling wave solutions of a Wick-type stochastic nonlinear Schr{o}dinger equation and of a Wick-type stochastic fractional Regularized Long Wave-Burgers (RLW-Burgers) equation have been obtained by using an improved computational method. Specifically, the Hermite transform is employed for transforming Wick-type stochastic nonlinear partial differential equations into deterministic nonlinear partial differential equations with integral and fraction order. Furthermore, the required set of stochastic solutions in the white noise space is obtained by using the inverse Hermite transform. Based on the derived solutions, the dynamics of the considered equations are performed with some particular values of the physical parameters. The results reveal that the proposed improved computational technique can be applied to solve various kinds of Wick-type stochastic fractional partial differential equations.

قيم البحث

اقرأ أيضاً

We propose a simple algebraic method for generating classes of traveling wave solutions for a variety of partial differential equations of current interest in nonlinear science. This procedure applies equally well to equations which may or may not be integrable. We illustrate the method with two distinct classes of models, one with solutions including compactons in a class of models inspired by the Rosenau-Hyman, Rosenau-Pikovsky and Rosenau-Hyman-Staley equations, and the other with solutions including peakons in a system which generalizes the Camassa-Holm, Degasperis-Procesi and Dullin-Gotwald-Holm equations. In both cases, we obtain new classes of solutions not studied before.
Using increasing sequences of real numbers, we generalize the idea of formal moment differentiation first introduced by W. Balser and M. Yoshino. Slight departure from the concept of Gevrey sequences enables us to include a wide variety of operators in our study. Basing our approach on tools such as the Newton polygon and divergent formal norms, we obtain estimates for formal solutions of certain families of generalized linear moment partial differential equations with constant and time variable coefficients.
We identify the stochastic processes associated with one-sided fractional partial differential equations on a bounded domain with various boundary conditions. This is essential for modelling using spatial fractional derivatives. We show well-posednes s of the associated Cauchy problems in $C_0(Omega)$ and $L_1(Omega)$. In order to do so we develop a new method of embedding finite state Markov processes into Feller processes and then show convergence of the respective Feller processes. This also gives a numerical approximation of the solution. The proof of well-posedness closes a gap in many numerical algorithm articles approximating solutions to fractional differential equations that use the Lax-Richtmyer Equivalence Theorem to prove convergence without checking well-posedness.
We derive optimal-order homogenization rates for random nonlinear elliptic PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone operator on $mathbb{R}^d$ with stationary law (i.e. spatially homogeneous statistics) and fast decay of correlations on scales larger than the microscale $varepsilon>0$, we establish homogenization error estimates of the order $varepsilon$ in case $dgeq 3$, respectively of the order $varepsilon |log varepsilon|^{1/2}$ in case $d=2$. Previous results in nonlinear stochastic homogenization have been limited to a small algebraic rate of convergence $varepsilon^delta$. We also establish error estimates for the approximation of the homogenized operator by the method of representative volumes of the order $(L/varepsilon)^{-d/2}$ for a representative volume of size $L$. Our results also hold in the case of systems for which a (small-scale) $C^{1,alpha}$ regularity theory is available.
In this contribution, we study a class of doubly nonlinear elliptic equations with bounded, merely integrable right-hand side on the whole space $mathbb{R}^N$. The equation is driven by the fractional Laplacian $(-Delta)^{frac{s}{2}}$ for $sin (0,1]$ and a strongly continuous nonlinear perturbation of first order. It is well known that weak solutions are in genreral not unique in this setting. We are able to prove an $L^1$-contraction and comparison principle and to show existence and uniqueness of entropy solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا