ترغب بنشر مسار تعليمي؟ اضغط هنا

Automatic crack detection and classification by exploiting statistical event descriptors for Deep Learning

125   0   0.0 ( 0 )
 نشر من قبل Giulio Siracusano Dr.
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

In modern building infrastructures, the chance to devise adaptive and unsupervised data-driven health monitoring systems is gaining in popularity due to the large availability of data from low-cost sensors with internetworking capabilities. In particular, deep learning provides the tools for processing and analyzing this unprecedented amount of data efficiently. The main purpose of this paper is to combine the recent advances of Deep Learning (DL) and statistical analysis on structural health monitoring (SHM) to develop an accurate classification tool able to discriminate among different acoustic emission events (cracks) by means of the identification of tensile, shear and mixed modes. The applications of DL in SHM systems is described by using the concept of Bidirectional Long Short Term Memory. We investigated on effective event descriptors to capture the unique characteristics from the different types of modes. Among them, Spectral Kurtosis and Spectral L2/L1 Norm exhibit distinctive behavior and effectively contributed to the learning process. This classification will contribute to unambiguously detect incipient damages, which is advantageous to realize predictive maintenance. Tests on experimental results confirm that this method achieves accurate classification (92%) capabilities of crack events and can impact on the design of future SHM technologies.



قيم البحث

اقرأ أيضاً

Background: Despite recent significant progress in the development of automatic sleep staging methods, building a good model still remains a big challenge for sleep studies with a small cohort due to the data-variability and data-inefficiency issues. This work presents a deep transfer learning approach to overcome these issues and enable transferring knowledge from a large dataset to a small cohort for automatic sleep staging. Methods: We start from a generic end-to-end deep learning framework for sequence-to-sequence sleep staging and derive two networks as the means for transfer learning. The networks are first trained in the source domain (i.e. the large database). The pretrained networks are then finetuned in the target domain (i.e. the small cohort) to complete knowledge transfer. We employ the Montreal Archive of Sleep Studies (MASS) database consisting of 200 subjects as the source domain and study deep transfer learning on three different target domains: the Sleep Cassette subset and the Sleep Telemetry subset of the Sleep-EDF Expanded database, and the Surrey-cEEGrid database. The target domains are purposely adopted to cover different degrees of data mismatch to the source domains. Results: Our experimental results show significant performance improvement on automatic sleep staging on the target domains achieved with the proposed deep transfer learning approach. Conclusions: These results suggest the efficacy of the proposed approach in addressing the above-mentioned data-variability and data-inefficiency issues. Significance: As a consequence, it would enable one to improve the quality of automatic sleep staging models when the amount of data is relatively small. The source code and the pretrained models are available at http://github.com/pquochuy/sleep_transfer_learning.
Life-threatening ventricular arrhythmias (VA) are the leading cause of sudden cardiac death (SCD), which is the most significant cause of natural death in the US. The implantable cardioverter defibrillator (ICD) is a small device implanted to patient s under high risk of SCD as a preventive treatment. The ICD continuously monitors the intracardiac rhythm and delivers shock when detecting the life-threatening VA. Traditional methods detect VA by setting criteria on the detected rhythm. However, those methods suffer from a high inappropriate shock rate and require a regular follow-up to optimize criteria parameters for each ICD recipient. To ameliorate the challenges, we propose the personalized computing framework for deep learning based VA detection on medical IoT systems. The system consists of intracardiac and surface rhythm monitors, and the cloud platform for data uploading, diagnosis, and CNN model personalization. We equip the system with real-time inference on both intracardiac and surface rhythm monitors. To improve the detection accuracy, we enable the monitors to detect VA collaboratively by proposing the cooperative inference. We also introduce the CNN personalization for each patient based on the computing framework to tackle the unlabeled and limited rhythm data problem. When compared with the traditional detection algorithm, the proposed method achieves comparable accuracy on VA rhythm detection and 6.6% reduction in inappropriate shock rate, while the average inference latency is kept at 71ms.
Identification of a person from fingerprints of good quality has been used by commercial applications and law enforcement agencies for many years, however identification of a person from latent fingerprints is very difficult and challenging. A latent fingerprint is a fingerprint left on a surface by deposits of oils and/or perspiration from the finger. It is not usually visible to the naked eye but may be detected with special techniques such as dusting with fine powder and then lifting the pattern of powder with transparent tape. We have evaluated the quality of machine learning techniques that has been implemented in automatic fingerprint identification. In this paper, we use fingerprints of low quality from database DB1 of Fingerprint Verification Competition (FVC 2002) to conduct our experiments. Fingerprints are processed to find its core point using Poincare index and carry out enhancement using Diffusion coherence filter whose performance is known to be good in the high curvature regions of fingerprints. Grey-level Co-Occurrence Matrix (GLCM) based seven statistical descriptors with four different inter pixel distances are then extracted as features and put forward to train and test REPTree, RandomTree, J48, Decision Stump and Random Forest Machine Learning techniques for personal identification. Experiments are conducted on 80 instances and 28 attributes. Our experiments proved that Random Forests and J48 give good results for latent fingerprints as compared to other machine learning techniques and can help improve the identification accuracy.
Deep learning applied to electrocardiogram (ECG) data can be used to achieve personal authentication in biometric security applications, but it has not been widely used to diagnose cardiovascular disorders. We developed a deep learning model for the detection of arrhythmia in which time-sliced ECG data representing the distance between successive R-peaks are used as the input for a convolutional neural network (CNN). The main objective is developing the compact deep learning based detect system which minimally uses the dataset but delivers the confident accuracy rate of the Arrhythmia detection. This compact system can be implemented in wearable devices or real-time monitoring equipment because the feature extraction step is not required for complex ECG waveforms, only the R-peak data is needed. The results of both tests indicated that the Compact Arrhythmia Detection System (CADS) matched the performance of conventional systems for the detection of arrhythmia in two consecutive test runs. All features of the CADS are fully implemented and publicly available in MATLAB.
The recent surge in Deep Learning (DL) research of the past decade has successfully provided solutions to many difficult problems. The field of quantitative analysis has been slowly adapting the new methods to its problems, but due to problems such a s the non-stationary nature of financial data, significant challenges must be overcome before DL is fully utilized. In this work a new method to construct stationary features, that allows DL models to be applied effectively, is proposed. These features are thoroughly tested on the task of predicting mid price movements of the Limit Order Book. Several DL models are evaluated, such as recurrent Long Short Term Memory (LSTM) networks and Convolutional Neural Networks (CNN). Finally a novel model that combines the ability of CNNs to extract useful features and the ability of LSTMs to analyze time series, is proposed and evaluated. The combined model is able to outperform the individual LSTM and CNN models in the prediction horizons that are tested.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا