ﻻ يوجد ملخص باللغة العربية
A brief review of experiments directed to study a gradual localization of charge carriers and metal-insulator transition in samples of disordered monolayer graphene is presented. Disorder was induced by irradiation with different doses of heavy and light ions. Degree of disorder was controlled by measurements of the Raman scattering spectra. The temperature dependences of conductivity and magnetoresistance (MR) showed that at low disorder, conductivity is governed by the weak localization and antilocalization regime. Further increase of disorder leads to strong localization of charge carriers, when the conductivity is described by the variable-range-hopping (VRH) mechanism. It was observed that MR in the VRH regime is negative in perpendicular fields and is positive in parallel magnetic fields which allowed to reveal different mechanisms of hopping MR. Theoretical analysis is in a good agreement with experimental data.
Broadening of the Raman scattering (RS) spectra was studied in monolayer graphene samples irradiated with various dose of ions followed by annealing of radiation damage at different temperatures. It is shown that the width {Gamma} (full width at half
We develop a minimal theory for the recently observed metal-insulator transition (MIT) in two-dimensional (2D) moire multilayer transition metal dichalcogenides (mTMD) using Coulomb disorder in the environment as the underlying mechanism. In particul
Here we show, with simultaneous transport and photoemission measurements, that the graphene terminated SiC(0001) surface undergoes a metal-insulator transition (MIT) upon dosingwith small amounts of atomic hydrogen. We find the room temperature resis
The criticality of vacancy-induced metal-insulator transition (MIT) in graphene is investigated by Kubo-Greenwood formula with tight-binding recursion method. The critical vacancy concentration for the MIT is determined to be 0.053%. The scaling laws
Impurities play an important role during recombination processes in semiconductors. Their important role is sharpened in atomically-thin transition-metal dichalcogenides whose two-dimensional character renders electrons and holes highly susceptible t