ترغب بنشر مسار تعليمي؟ اضغط هنا

Unusual dynamic charge-density-wave correlations in HgBa$_2$CuO$_{4+delta}$

88   0   0.0 ( 0 )
 نشر من قبل Biqiong Yu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The charge-density-wave (CDW) instability in the underdoped, pseudogap part of the cuprate phase diagram has been a major recent research focus, yet measurements of dynamic, energy-resolved CDW correlations are still in their infancy. We report a high-resolution resonant inelastic X-ray scattering (RIXS) study of the underdoped cuprate superconductor HgBa$_{2}$CuO$_{4+delta}$ ($T_c = 70$ K). At $T=250$ K, above the CDW order temperature $T_mathrm{CDW} approx 200$ K, we observe significant dynamic CDW correlations at about 40 meV. This energy scale is comparable to both the superconducting gap and the previously reported low-energy pseudogap. At $T = T_c$, a strong elastic CDW peak appears, but the dynamic correlations around 40 meV remain virtually unchanged. In addition, we observe a new feature: dynamic correlations at significantly higher energy, with a characteristic scale of about 160 meV. A similar scale was previously identified in other experiments as a high-energy pseudogap. The existence of three distinct features in the charge response is highly unusual for a CDW system, and suggests that charge order in the cuprates is closely related to the pseudogap phenomenon and more complex than previously thought. We further observe the paramagnon dispersion along [1,0], across the two-dimensional CDW wavevector $boldsymbol{q}_mathrm{CDW}$, which is consistent with magnetic excitations measured by inelastic neutron scattering. Unlike for some other cuprates, our results point to the absence of a discernible coupling between CDW and magnetic excitations.

قيم البحث

اقرأ أيضاً

131 - W. Tabis , B. Yu , I. Bialo 2017
We present a detailed synchrotron x-ray scattering study of the charge-density-wave (CDW) order in simple tetragonal HgBa$_2$CuO$_{4+delta}$ (Hg1201). Resonant soft x-ray scattering measurements reveal that short-range order appears at a temperature that is distinctly lower than the pseudogap temperature and in excellent agreement with a prior transient reflectivity result. Despite considerable structural differences between Hg1201 and YBa$_2$Cu$_3$O$_{6+delta}$, the CDW correlations exhibit similar doping dependencies, and we demonstrate a universal relationship between the CDW wave vector and the size of the reconstructed Fermi pocket observed in quantum oscillation experiments. The CDW correlations in Hg1201 vanish already below optimal doping, once the correlation length is comparable to the CDW modulation period, and they appear to be limited by the disorder potential from unit cells hosting two interstitial oxygen atoms. A complementary hard x-ray diffraction measurement, performed on an underdoped Hg1201 sample in magnetic fields along the crystallographic $c$ axis of up to 16 T, provides information about the form factor of the CDW order. As expected from the single-CuO$_2$-layer structure of Hg1201, the CDW correlations vanish at half-integer values of $L$ and appear to be peaked at integer $L$. We conclude that the atomic displacements associated with the short-range CDW order are mainly planar, within the CuO$_2$ layers.
Various forms of spin and charge ordering have been identified in a wide range of cuprate superconducting materials, but whether these behaviors are ubiquitous phenomena is not established. In this work we focus on one of the simplest compounds, HgBa $_{2}$CuO$_{4+delta}$ (Hg1201), a superconductor with a high transition temperature, 97 K, having only a single layer and tetragonal structure, in contrast to one of the most extensively studied materials, YBa$_{2}$Cu$_{3}$O$_{6+y}$ (Y123). Using nuclear magnetic resonance we have discovered a coherent spatial modulation of both spin and charge that is temperature and magnetic field independent, in competition with superconductivity similar to other cuprates. However, there is no evidence for the magnetic field and temperature induced charge order observed in Y123. Electronic instabilities are a common feature of cuprates as in the present work on Hg1201, but their manifestations are not universal.
The pseudogap phenomenon in cuprates is the most mysterious puzzle in the research of high-temperature superconductivity. In particular, whether the pseudogap is associated with a crossover or phase transition has been a long-standing controversial i ssue. The tetragonal cuprate HgBa$_2$CuO$_{4+delta}$, with only one CuO$_2$ layer per primitive cell, is an ideal system to tackle this puzzle. Here, we measure the anisotropy of magnetic susceptibility within the CuO$_2$ plane with exceptionally high-precision magnetic torque experiments. Our key finding is that a distinct two-fold in-plane anisotropy sets in below the pseudogap temperature $T^*$, which provides thermodynamic evidence for a nematic phase transition with broken four-fold symmetry. Most surprisingly, the nematic director orients along the diagonal direction of the CuO$_2$ square lattice, in sharp contrast to the bond nematicity reported in various iron-based superconductors and double-layer YBa$_2$Cu$_3$O$_{6+delta}$, where the anisotropy axis is along the Fe-Fe and Cu-O-Cu directions, respectively. Another remarkable feature is that the enhancement of the diagonal nematicity with decreasing temperature is suppressed around the temperature at which short-range charge-density-wave (CDW) formation occurs. This is in stark contrast to YBa$_2$Cu$_3$O$_{6+delta}$, where the bond nematicity is not influenced by the CDW. Our result suggests a competing relationship between diagonal nematic and CDW order in HgBa$_2$CuO$_{4+delta}$.
The specific heat $C$ of the single-layer cuprate superconductor HgBa$_2$CuO$_{4 + delta}$ was measured in an underdoped crystal with $T_{rm c} = 72$ K at temperatures down to $2$ K in magnetic fields up to $35$ T, a field large enough to suppress su perconductivity at that doping ($p simeq 0.09$). In the normal state at $H = 35$ T, a residual linear term of magnitude $gamma = 12 pm 2$ mJ/K$^2$mol is observed in $C/T$ as $T to 0$, a direct measure of the electronic density of states. This high value of $gamma$ has two major implications. First, it is significantly larger than the value measured in overdoped cuprates outside the pseudogap phase ($p >p^star$), such as La$_{2-x}$Sr$_x$CuO$_4$ and Tl$_2$Ba$_2$CuO$_{6 + delta}$ at $p simeq 0.3$, where $gamma simeq 7$ mJ/K$^2$mol. Given that the pseudogap causes a loss of density of states, and assuming that HgBa$_2$CuO$_{4 + delta}$ has the same $gamma$ value as other cuprates at $p simeq 0.3$, this implies that $gamma$ in HgBa$_2$CuO$_{4 + delta}$ must peak between $p simeq 0.09$ and $p simeq 0.3$, namely at (or near) the critical doping $p^star$ where the pseudogap phase is expected to end ($p^starsimeq 0.2$). Secondly, the high $gamma$ value implies that the Fermi surface must consist of more than the single electron-like pocket detected by quantum oscillations in HgBa$_2$CuO$_{4 + delta}$ at $p simeq 0.09$, whose effective mass $m^star= 2.7times m_0$ yields only $gamma = 4.0$ mJ/K$^2$mol. This missing mass imposes a revision of the current scenario for how pseudogap and charge order respectively transform and reconstruct the Fermi surface of cuprates.
Phonons in nearly optimally doped HgBa$_2$CuO$_{4+delta}$ were studied by inelastic X-ray scattering. The dispersion of the low energy modes is well described by a shell model, while the Cu-O bond stretching mode at high energy shows strong softening towards the zone boundary, which deviates strongly from the model. This seems to be common in the hole-doped high-$T_mathrm{c}$ superconducting cuprates, and, based on this work, not related to a lattice distortion specific to each material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا