ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent Charge and Spin Density Waves in Underdoped HgBa$_{2}$CuO$_{4+delta}$

69   0   0.0 ( 0 )
 نشر من قبل Jeongseop Lee
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Various forms of spin and charge ordering have been identified in a wide range of cuprate superconducting materials, but whether these behaviors are ubiquitous phenomena is not established. In this work we focus on one of the simplest compounds, HgBa$_{2}$CuO$_{4+delta}$ (Hg1201), a superconductor with a high transition temperature, 97 K, having only a single layer and tetragonal structure, in contrast to one of the most extensively studied materials, YBa$_{2}$Cu$_{3}$O$_{6+y}$ (Y123). Using nuclear magnetic resonance we have discovered a coherent spatial modulation of both spin and charge that is temperature and magnetic field independent, in competition with superconductivity similar to other cuprates. However, there is no evidence for the magnetic field and temperature induced charge order observed in Y123. Electronic instabilities are a common feature of cuprates as in the present work on Hg1201, but their manifestations are not universal.

قيم البحث

اقرأ أيضاً

87 - B. Yu , W. Tabis , I. Bialo 2019
The charge-density-wave (CDW) instability in the underdoped, pseudogap part of the cuprate phase diagram has been a major recent research focus, yet measurements of dynamic, energy-resolved CDW correlations are still in their infancy. We report a hig h-resolution resonant inelastic X-ray scattering (RIXS) study of the underdoped cuprate superconductor HgBa$_{2}$CuO$_{4+delta}$ ($T_c = 70$ K). At $T=250$ K, above the CDW order temperature $T_mathrm{CDW} approx 200$ K, we observe significant dynamic CDW correlations at about 40 meV. This energy scale is comparable to both the superconducting gap and the previously reported low-energy pseudogap. At $T = T_c$, a strong elastic CDW peak appears, but the dynamic correlations around 40 meV remain virtually unchanged. In addition, we observe a new feature: dynamic correlations at significantly higher energy, with a characteristic scale of about 160 meV. A similar scale was previously identified in other experiments as a high-energy pseudogap. The existence of three distinct features in the charge response is highly unusual for a CDW system, and suggests that charge order in the cuprates is closely related to the pseudogap phenomenon and more complex than previously thought. We further observe the paramagnon dispersion along [1,0], across the two-dimensional CDW wavevector $boldsymbol{q}_mathrm{CDW}$, which is consistent with magnetic excitations measured by inelastic neutron scattering. Unlike for some other cuprates, our results point to the absence of a discernible coupling between CDW and magnetic excitations.
Using resonant X-ray diffraction and Raman spectroscopy, we study charge correlations and lattice dynamics in two model cuprates, HgBa$_{2}$CuO$_{4+delta}$ and HgBa$_{2}$CaCu$_{2}$O$_{6+delta}$. We observe a maximum of the characteristic charge order temperature around the same hole concentration ($p approx 0.09$) in both compounds, and concomitant pronounced anomalies in the lattice dynamics that involve the motion of atoms in and/or adjacent to the CuO$_2$ layers. These anomalies are already present at room temperature, and therefore precede the formation of the static charge correlations, and we attribute them to an instability of the CuO$_2$ layers. Our finding implies that the charge order in the cuprates is an emergent phenomenon, driven by a fundamental variation in both lattice and electronic properties as a function of doping.
127 - Y. Itoh , T. Machi , A. Yamamoto 2017
The magnitude of the powder spin susceptibility of an optimally doped superconductor HgBa$_2$CuO$_{4+delta}$ (Hg1201) in the normal state is found to be nearly the same as that of La$_{2-x}$Sr$_{x}$CuO$_{4}$ near the optimally doped level. The Stoner enhancement factor of Hg1201 is larger than that of La$_{2-x}$Sr$_{x}$CuO$_{4}$. The magnitude correlation of the Stoner enhancement factor is inconsistent with the effect of the recent theoretical Coulomb repulsion between 3$d$ electrons and that of the superexchange intereraction of a charge transfer type.
Nuclear magnetic resonance (NMR) experiments on single crystals of HgBa$_{2}$CuO$_{4+delta}$ are presented that identify two distinct temperature-dependent spin susceptibilities: one is due to a spin component that is temperature-dependent above the critical temperature for superconductivity ($T_{rm c}$) and reflects pseudogap behavior; the other is Fermi-liquid-like in that it is temperature independent above $T_{rm c}$ and vanishes rapidly below $T_{rm c}$. In addition, we demonstrate the existence of a third, hitherto undetected spin susceptibility: it is temperature independent at higher temperatures, vanishes at lower temperatures (below $T_0 eq T_{rm c}$), and changes sign near optimal doping. This susceptibility either arises from the coupling between the two spin components, or it could be given by a distinct third spin component.
131 - W. Tabis , B. Yu , I. Bialo 2017
We present a detailed synchrotron x-ray scattering study of the charge-density-wave (CDW) order in simple tetragonal HgBa$_2$CuO$_{4+delta}$ (Hg1201). Resonant soft x-ray scattering measurements reveal that short-range order appears at a temperature that is distinctly lower than the pseudogap temperature and in excellent agreement with a prior transient reflectivity result. Despite considerable structural differences between Hg1201 and YBa$_2$Cu$_3$O$_{6+delta}$, the CDW correlations exhibit similar doping dependencies, and we demonstrate a universal relationship between the CDW wave vector and the size of the reconstructed Fermi pocket observed in quantum oscillation experiments. The CDW correlations in Hg1201 vanish already below optimal doping, once the correlation length is comparable to the CDW modulation period, and they appear to be limited by the disorder potential from unit cells hosting two interstitial oxygen atoms. A complementary hard x-ray diffraction measurement, performed on an underdoped Hg1201 sample in magnetic fields along the crystallographic $c$ axis of up to 16 T, provides information about the form factor of the CDW order. As expected from the single-CuO$_2$-layer structure of Hg1201, the CDW correlations vanish at half-integer values of $L$ and appear to be peaked at integer $L$. We conclude that the atomic displacements associated with the short-range CDW order are mainly planar, within the CuO$_2$ layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا