ﻻ يوجد ملخص باللغة العربية
Frankl and Furedi conjectured in 1989 that the maximum Lagrangian, denoted by $lambda_r(m)$, among all $r$-uniform hypergraphs of fixed size $m$ is achieved by the minimum hypergraph $C_{r,m}$ under the colexicographic order. We say $m$ in {em principal domain} if there exists an integer $t$ such that ${t-1choose r}leq mleq {tchoose r}-{t-2choose r-2}$. If $m$ is in the principal domain, then Frankl-Furedis conjecture has a very simple expression: $$lambda_r(m)=frac{1}{(t-1)^r}{t-1choose r}.$$ Many previous results are focusing on $r=3$. For $rgeq 4$, Tyomkyn in 2017 proved that Frankl-F{u}redis conjecture holds whenever ${t-1choose r} leq m leq {tchoose r} -{t-2choose r-2}- delta_rt^{r-2}$ for a constant $delta_r>0$. In this paper, we improve Tyomkyns result by showing Frankl-F{u}redis conjecture holds whenever ${t-1choose r} leq m leq {tchoose r} -{t-2choose r-2}- delta_rt^{r-frac{7}{3}}$ for a constant $delta_r>0$.
The Lagrangian of a hypergraph has been a useful tool in hypergraph extremal problems. In most applications, we need an upper bound for the Lagrangian of a hypergraph. Frankl and Furedi in cite{FF} conjectured that the $r$-graph with $m$ edges formed
It is conjectured by Frankl and Furedi that the $r$-uniform hypergraph with $m$ edges formed by taking the first $m$ sets in the colex ordering of ${mathbb N}^{(r)}$ has the largest Lagrangian of all $r$-uniform hypergraphs with $m$ edges in cite{FF}
The Frankl conjecture (called also union-closed sets conjecture) is one of the famous unsolved conjectures in combinatorics of finite sets. In this short note, we introduce and to some extent justify some variants of the Frankl conjecture.
Motzkin and Straus established a close connection between the maximum clique problem and a solution (namely graph-Lagrangians) to the maximum value of a class of homogeneous quadratic multilinear functions over the standard simplex of the Euclidean s
There is a remarkable connection between the maximum clique number and the Lagrangian of a graph given by T. S. Motzkin and E.G. Straus in 1965. This connection and its extensions were successfully employed in optimization to provide heuristics for t