ترغب بنشر مسار تعليمي؟ اضغط هنا

The split torsor method for Manins conjecture

102   0   0.0 ( 0 )
 نشر من قبل Marta Pieropan
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the split torsor method to count rational points of bounded height on Fano varieties. As an application, we prove Manins conjecture for all nonsplit quartic del Pezzo surfaces of type $mathbf A_3+mathbf A_1$ over arbitrary number fields. The counting problem on the split torsor is solved in the framework of o-minimal structures.



قيم البحث

اقرأ أيضاً

We prove Manins conjecture on the asymptotic behavior of the number of rational points of bounded anticanonical height for a spherical threefold with canonical singularities and two infinite families of spherical threefolds with log terminal singular ities. Moreover, we show that one of these families does not satisfy a conjecture of Batyrev and Tschinkel on the leading constant in the asymptotic formula. Our proofs are based on the universal torsor method, using Brions description of Cox rings of spherical varieties.
We prove a special case of a dynamical analogue of the classical Mordell-Lang conjecture. In particular, let $phi$ be a rational function with no superattracting periodic points other than exceptional points. If the coefficients of $phi$ are algebrai c, we show that the orbit of a point outside the union of proper preperiodic subvarieties of $(bP^1)^g$ has only finite intersection with any curve contained in $(bP^1)^g$. We also show that our result holds for indecomposable polynomials $phi$ with coefficients in $bC$. Our proof uses results from $p$-adic dynamics together with an integrality argument. The extension to polynomials defined over $bC$ uses the method of specializations coupled with some new results of Medvedev and Scanlon for describing the periodic plane curves under the action of $(phi,phi)$ on $bA^2$.
In this paper, we prove the Uniform Mordell-Lang Conjecture for subvarieties in abelian varieties. As a byproduct, we prove the Uniform Bogomolov Conjecture for subvarieties in abelian varieties.
In this article, we study the Beilinson-Bloch-Kato conjecture for motives corresponding to the Rankin-Selberg product of conjugate self-dual automorphic representations, within the framework of the Gan-Gross-Prasad conjecture. We show that if the cen tral critical value of the Rankin-Selberg $L$-function does not vanish, then the Bloch-Kato Selmer group with coefficients in a favorable field of the corresponding motive vanishes. We also show that if the class in the Bloch-Kato Selmer group constructed from certain diagonal cycle does not vanish, which is conjecturally equivalent to the nonvanishing of the central critical first derivative of the Rankin-Selberg $L$-function, then the Bloch-Kato Selmer group is of rank one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا