ﻻ يوجد ملخص باللغة العربية
The Large Synoptic Survey Telescope (LSST) can advance scientific frontiers beyond its groundbreaking 10-year survey. Here we explore opportunities for extended operations with proposal-based observing strategies, new filters, or transformed instrumentation. We recommend the development of a mid-decade community- and science-driven process to define next-generation LSST capabilities.
A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective ape
Data Challenge 1 (DC1) is the first synthetic dataset produced by the Rubin Observatory Legacy Survey of Space and Time (LSST) Dark Energy Science Collaboration (DESC). DC1 is designed to develop and validate data reduction and analysis and to study
Pulsar timing arrays (PTAs) can be used to detect and study gravitational waves in the nanohertz band (i.e., wavelengths of order light-years). This requires high-precision, decades-long data sets from sensitive, instrumentally stable telescopes. NAN
This white paper is the result of the Tri-Agency Working Group (TAG) appointed to develop synergies between missions and is intended to clarify what LSST observations are needed in order to maximally enhance the combined science output of LSST and Eu
In this white paper, we discuss future uses of the LSST facility after the planned 10-year survey is complete. We expect the LSST survey to profoundly affect the scientific landscape over the next ten years, and it is likely that unexpected discoveri