ﻻ يوجد ملخص باللغة العربية
In pursuit of infrared (IR) radiation absorbers, we examine quasicrystal structures made of graphite wires. An array of graphitic cages and cage-within-cage, and whose overall dimensions is smaller than the radiation wavelength exhibit a flat absorption spectrum, A~0.83 between 10-30 microns and a quality loss factor of L~0.83 (L=A/Q, with Q, the quality factor). Simulations at microwave frequencies show multiple absorption lines. In the case of a cage within cage, energy is funneled towards the inner cage which result in a rather hot structure. Applications are envisioned as anti-fogging surfaces, EM shields and energy harvesting.
We examine array of metal-mesh frameworks for their wide-band absorption. These take the form of quasi-crystal optical cages. An array of cages tends to focus the incoming radiation within each framework. An array of cage-within-cage funnels the radi
Recently, we developed a new family of 3D photonic hollow resonators which theoretically allow tight confinement of light in a fluid (gaz or liquid): the photon cages. These new resonators could be ideal for sensing applications since they not only l
Optical bottle beams can be used to trap atoms and small low-index particles. We introduce a figure of merit for optical bottle beams, specifically in the context of optical traps, and use it to compare optical bottle-beam traps obtained by three dif
Optical nanoantennas, i.e., elements transforming localized light or waveguide modes into freely propagating fields and vice versa, are vital components for modern nanophotonics. Optical antennas have been demonstrated to cause the Dicke superradianc
Whispering gallery modes (WGMs), circulating modes near the surface of a spheroidal material, have been known to exhibit high quality factors for both acoustic and electromagnetic waves. Here, we report an electro-optomechanical system, where the ove