ﻻ يوجد ملخص باللغة العربية
Optical nanoantennas, i.e., elements transforming localized light or waveguide modes into freely propagating fields and vice versa, are vital components for modern nanophotonics. Optical antennas have been demonstrated to cause the Dicke superradiance effect, i.e., collective spontaneous emission of quantum sources. However, the impact of coherent excitation on the antenna performance, such as directivity, efficiency, and Purcell effect, remains mostly unexplored. Herein, using full-wave numerical simulations backed by a quantum model, we unveil that coherent excitation allows controlling antenna multipoles, on-demand excitation of nonradiative states, enhanced directivity and improves antenna radiation efficiency. This collective excitation corresponds to the states with nonzero dipole moment in the quantum picture, where the quantum phase is well defined. The results of this work bring another degree of freedom - the collective phase of an ensemble of quantum emitters - to control optical nanoantennas and, as such, pave the way to the use of collective excitations for nanophotonic devices with superb performance. To make the discussion independent of the frequency range, we consider the all-dielectric design and use dimensionless units.
Whispering gallery modes (WGMs), circulating modes near the surface of a spheroidal material, have been known to exhibit high quality factors for both acoustic and electromagnetic waves. Here, we report an electro-optomechanical system, where the ove
The ability to engineer nonlinear optical processes in all-dielectric nanostructures is both of fundamental interest and highly desirable for high-performance, robust, and miniaturized nonlinear optical devices. Herein, we propose a novel paradigm fo
Noiseless optical components are critical for applications ranging from metrology to quantum communication. Here we characterize several commercial telecom C-band fiber components for parasitic noise using a tunable laser. We observe the spectral sig
We present a compact, fibre-coupled single photon source using gradient-index (GRIN) lenses and an InAsP semiconductor quantum dot embedded within an InP photonic nanowire waveguide. A GRIN lens assembly is used to collect photons close to the tip of
We demonstrated the continuous-wave (cw) and pulsed optical vortex with topological charges driven by heat generated during the lasing process without introducing the astigmatism effect and reducing lasing efficiency. During the lasing process, the t