ﻻ يوجد ملخص باللغة العربية
A point charge near the surface of a topological insulator (TI) with broken time-reversal symmetry is predicted to generate an image magnetic charge in addition to an image electric charge. We use scanning tunneling spectroscopy to study the image potential states (IPS) of the topological semimetal Sb(111) surface. We observe five IPS with discrete energy levels that are well described by a one-dimensional model. The spatial variation of the IPS energies and lifetimes near surface step edges shows the first local signature of resonant interband scattering between IPS, which suggests that image charges too may interact. Our work motivates the exploration of the TI surface geometry necessary to realize and manipulate a magnetic charge.
Dissipation mechanisms are experimentally studied on topological insulator surfaces of Bi2Te3, where common Joule dissipation was observed to be suppressed due to topologically protected surface states. Thus, a novel type of dissipation mechanism is
Topological insulators (TIs) represent a novel quantum state of matter, characterized by edge or surface-states, showing up on the topological character of the bulk wave functions. Allowing electrons to move along their surface, but not through their
We experimentally investigate the magnetic field dependence of Andreev transport through a region of proximity-induced superconductivity in CoSi topological chiral semimetal. With increasing parallel to the CoSi surface magnetic field, the sharp subg
Symmetry plays a major role in all disciplines of physics. Within the field of topological materials there is a great interest in understanding how the mechanics of crystalline and internal symmetries protect crossings between the conduction and vale
Of the two stable forms of graphite, hexagonal (HG) and rhombohedral (RG), the former is more common and has been studied extensively. RG is less stable, which so far precluded its detailed investigation, despite many theoretical predictions about th