ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable coupling and isolation of single electrons in silicon metal-oxide-semiconductor quantum dots

110   0   0.0 ( 0 )
 نشر من قبل Harmen Eenink
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extremely long coherence times, excellent single-qubit gate fidelities and two-qubit logic have been demonstrated with silicon metal-oxide-semiconductor spin qubits, making it one of the leading platforms for quantum information processing. Despite this, a long-standing challenge in this system has been the demonstration of tunable tunnel coupling between single electrons. Here we overcome this hurdle with gate-defined quantum dots and show couplings that can be tuned on and off for quantum operations. We use charge sensing to discriminate between the (2,0) and (1,1) charge states of a double quantum dot and show excellent charge sensitivity. We demonstrate tunable coupling up to 13 GHz, obtained by fitting charge polarization lines, and tunable tunnel rates down to below 1 Hz, deduced from the random telegraph signal. The demonstration of tunable coupling between single electrons in a silicon metal-oxide-semiconductor device provides significant scope for high-fidelity two-qubit logic toward quantum information processing with standard manufacturing.



قيم البحث

اقرأ أيضاً

We present transport measurements of a tunable silicon metal-oxide-semiconductor double quantum dot device with lateral geometry. Experimentally extracted gate-to-dot capacitances show that the device is largely symmetric under the gate voltages appl ied. Intriguingly, these gate voltages themselves are not symmetric. Comparison with numerical simulations indicates that the applied gate voltages serve to offset an intrinsic asymmetry in the physical device. We also show a transition from a large single dot to two well isolated coupled dots, where the central gate of the device is used to controllably tune the interdot coupling.
We have observed the Kondo effect in strongly coupled semiconducting nanowire quantum dots. The devices are made from indium arsenide nanowires, grown by molecular beam epitaxy, and contacted by titanium leads. The device transparency can be tuned by changing the potential on a gate electrode, and for increasing transparencies the effects dominating the transport changes from Coulomb Blockade to Universal Conductance Fluctuations with Kondo physics appearing in the intermediate region.
The success of all-graphene electronics is severely hindered by the challenging realization and subsequent integration of semiconducting channels and metallic contacts. Here, we comprehensively investigate the electronic transport across width-modula ted heterojunctions consisting of a graphene quantum dot of varying lengths and widths embedded in a pair of armchair-edged metallic nanoribbons, of the kind recently fabricated via on-surface synthesis. We show that the presence of the quantum dot enables the opening of a width-dependent transport gap, thereby yielding built-in one-dimensional metal-semiconductor-metal junctions. Furthermore, we find that, in the vicinity of the band edges, the conductance is subject to a smooth transition from an antiresonant to a resonant transport regime upon increasing the channel length. These results are rationalized in terms of a competition between quantum-confinement effects and quantum dot-to-lead coupling. Overall, our work establishes graphene quantum dot nanoarchitectures as appealing platforms to seamlessly integrate gap-tunable semiconducting channels and metallic contacts into an individual nanoribbon, hence realizing self-contained carbon-based electronic devices.
126 - S. D. Liles , R. Li , C. H. Yang 2018
The spin states of electrons confined in semiconductor quantum dots form a promising platform for quantum computation. Recent studies of silicon CMOS qubits have shown coherent manipulation of electron spin states with extremely high fidelity. Howeve r, manipulation of single electron spins requires large oscillatory magnetic fields to be generated on-chip, making it difficult to address individual qubits when scaling up to multi-qubit devices. The spin-orbit interaction allows spin states to be controlled with electric fields, which act locally and are easier to generate. While the spin-orbit interaction is weak for electrons in silicon, valence band holes have an inherently strong spin-orbit interaction. However, creating silicon quantum dots in which a single hole can be localised, in an architecture that is suitable for scale-up to a large number of qubits, is a challenge. Here we report a silicon quantum dot, with an integrated charge sensor, that can be operated down to the last hole. We map the spin states and orbital structure of the first six holes, and show they follow the Fock-Darwin spectrum. We also find that hole-hole interactions are extremely strong, reducing the two-hole singlet-triplet splitting by 90% compared to the single particle level spacing of 3.5 meV. These results provide a route to single hole spin quantum bits in a planar silicon CMOS architecture.
We analyze the electron spin relaxation rate $1/T_1$ of individual ion-implanted $^{31}$P donors, in a large set of metal-oxide-semiconductor (MOS) silicon nanoscale devices, with the aim of identifying spin relaxation mechanisms peculiar to the envi ronment of the spins. The measurements are conducted at low temperatures ($Tapprox 100$~mK), as a function of external magnetic field $B_0$ and donor electrochemical potential $mu_{rm D}$. We observe a magnetic field dependence of the form $1/T_1propto B_0^5$ for $B_0gtrsim 3,$ T, corresponding to the phonon-induced relaxation typical of donors in the bulk. However, the relaxation rate varies by up to two orders of magnitude between different devices. We attribute these differences to variations in lattice strain at the location of the donor. For $B_0lesssim 3,$T, the relaxation rate changes to $1/T_1propto B_0$ for two devices. This is consistent with relaxation induced by evanescent-wave Johnson noise created by the metal structures fabricated above the donors. At such low fields, where $T_1>1,$s, we also observe and quantify the spurious increase of $1/T_1$ when the electrochemical potential of the spin excited state $|uparrowrangle$ comes in proximity to empty states in the charge reservoir, leading to spin-dependent tunneling that resets the spin to $|downarrowrangle$. These results give precious insights into the microscopic phenomena that affect spin relaxation in MOS nanoscale devices, and provide strategies for engineering spin qubits with improved spin lifetimes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا