ﻻ يوجد ملخص باللغة العربية
We present a scheme for generating and manipulating three-mode squeezed states with genuine tripartite entanglement by injecting single-mode squeezed light into an array of coupled optical waveguides. We explore the possibility to selectively generate single-mode squeezing or multimode squeezing at the output of an elliptical waveguides array, determined solely by the input light polarization. We study the effect of losses in the waveguides array and show that quantum correlations and squeezing are preserved for realistic parameters. Our results show that arrays of optical waveguides are suitable platforms for generating multimode quantum light, which could lead to novel applications in quantum metrology.
Exploiting multiple modes in a quantum acoustic device could enable applications in quantum information in a hardware-efficient setup, including quantum simulation in a synthetic dimension and continuous-variable quantum computing with cluster states
We report measurements of two-photon interference using a cw-pumped type-II spontaneous parametric down-conversion source based on a multimode perodically poled potassium titanyl phosphate waveguide. We have used the recently demonstrated technique o
We study the cooperative optical coupling between regularly spaced atoms in a one-dimensional waveguide using decompositions to subradiant and superradiant collective excitation eigenmodes, direct numerical solutions, and analytical transfer-matrix m
We propose to integrate the electro-optic tuning function into polarization-entangled photon pair generation process in a periodically poled lithium niobate (PPLN). Due to the versatility of PPLN, both the spontaneously parametric down conversion and
We experimentally investigate the back-scattering properties of an array of atoms that is evanescently coupled to an optical nanofiber in the strongly non-paraxial regime. We observe that the power and the polarization of the back-scattered light dep