ﻻ يوجد ملخص باللغة العربية
Cold dark matter (CDM) could be composed of primordial black holes (PBH) in addition to or instead of more orthodox weakly interacting massive particle dark matter (PDM). We study the formation of the first structures in such $Lambda$PBH cosmologies using $N$-body simulations evolved from deep in the radiation era to redshift 99. When PBH are only a small component of the CDM, they are clothed by PDM to form isolated halos. On the other hand, when PBH make most of the CDM, halos can also grow via clustering of many PBH. We find that the halo mass function is well modelled via Poisson statistics assuming random initial conditions. We quantify the nonlinear velocities induced by structure formation and find that they are too small to significantly impact CMB constraints. A chief challenge is how best to extrapolate our results to lower redshifts relevant for some observational constraints.
We present a method that extends the capabilities of the PINpointing Orbit-Crossing Collapsed HIerarchical Objects (PINOCCHIO) code, allowing it to generate accurate dark matter halo mock catalogues in cosmological models where the linear growth fact
We study the impact of Early Dark Energy fluctuations in the linear and non-linear regimes of structure formation. In these models the energy density of dark energy is non-negligible at high redshifts and the fluctuations in the dark energy component
The {Lambda} cold dark matter ({Lambda}CDM) paradigm of galaxy formation predicts that dense spheroidal stellar structures invariably grow at early cosmic time. These primordial spheroids evolve toward a virialized dynamical status as they finally be
We examine the effects of cosmic strings on structure formation and on the ionization history of the universe. While Gaussian perturbations from inflation are known to provide the dominant contribution to the large scale structure of the universe, de
We examine the growth of structure in three different cosmological models with interacting dark matter and vacuum energy. We consider the case of geodesic dark matter with zero sound speed, where the relativistic growing mode in comoving-synchronous